• Abernathey, R., J. Marshall, and D. Ferreira, 2011: The dependence of Southern Ocean meridional overturning on wind stress. J. Phys. Oceanogr., 41, 22612278.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., J. R. Holton, and C. B. Leovy, 1987: Middle Atmosphere Dynamics. International Geophysics Series, Vol. 40, Academic Press, 489 pp.

  • Baines, P. G., 2009: A model for the structure of the Antarctic Slope Front. Deep-Sea Res. II, 56 (13–14), 859873.

  • Chavanne, C. P., K. J. Heywood, K. W. Nicholls, and I. Fer, 2010: Observations of the Antarctic slope undercurrent in the southeastern Weddell Sea. Geophys. Res. Lett.,37, L13601, doi:10.1029/2010GL043603.

  • Dinniman, M. S., J. M. Klinck, and W. O. Smith, 2011: A model study of Circumpolar Deep Water on the West Antarctic Peninsula and Ross Sea continental shelves. Deep-Sea Res. II, 58, 15081523.

    • Search Google Scholar
    • Export Citation
  • Döös, K., and D. J. Webb, 1994: The Deacon cell and the other meridional cells of the Southern Ocean. J. Phys. Oceanogr., 24, 429429.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., J. C. McWilliams, V. M. Canuto, and M. Dubovikov, 2008: Parameterization of eddy fluxes near oceanic boundaries. J. Climate, 21, 27702789.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the southern ocean. Science, 303, 210213.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gill, A. E., 1973: Circulation and bottom water production in the Weddell Sea. Deep-Sea Res., 20, 111140.

  • Gordon, A. L., 2009: Bottom water formation. Ocean Currents, J. H. Steele, S. A. Thorpe, and K. K. Turekian, Eds., Associated Press, 263–269.

  • Hallberg, R., and A. Gnanadesikan, 2006: The role of eddies in determining the structure and response of the wind-driven Southern Hemisphere overturning: Results from the Modeling Eddies in the Southern Ocean (MESO) project. J. Phys. Oceanogr., 36, 22322252.

    • Search Google Scholar
    • Export Citation
  • Hill, C., D. Ferreira, J. M. Campin, J. Marshall, R. Abernathey, and N. Barrier, 2012: Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models—Insights from virtual deliberate tracer release experiments. Ocean Modell., 45, 1426.

    • Search Google Scholar
    • Export Citation
  • Hofmann, M., and M. A. M. Maqueda, 2011: The response of Southern Ocean eddies to increased midlatitude westerlies: A non-eddy resolving model study. Geophys. Res. Lett.,38, L03605, doi:10.1029/2010GL045972.

  • Hogg, A. M. C., M. P. Meredith, J. R. Blundell, and C. Wilson, 2008: Eddy heat flux in the Southern Ocean: Response to variable wind forcing. J. Climate, 21, 608620.

    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., 2011: Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations? Ocean Modell., 39, 183199.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845.

    • Search Google Scholar
    • Export Citation
  • Jacobs, S. S., 1991: On the nature and significance of the Antarctic Slope Front. Mar. Chem., 35, 924.

  • Karsten, R. H., and J. Marshall, 2002: Constructing the residual circulation of the ACC from observations. J. Phys. Oceanogr., 32, 33153327.

    • Search Google Scholar
    • Export Citation
  • Kitoh, A., S. Murakami, and H. Koide, 2001: A simulation of the Last Glacial Maximum with a coupled atmosphere–ocean GCM. Geophys. Res. Lett., 28, 22212224.

    • Search Google Scholar
    • Export Citation
  • Krinner, G., and C. Genthon, 1998: GCM simulations of the Last Glacial Maximum surface climate of Greenland and Antarctica. Climate Dyn., 14, 741758.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Kuo, A., R. A. Plumb, and J. Marshall, 2005: Transformed Eulerian-mean theory. Part II: Potential vorticity homogenization and the equilibrium of a wind-and buoyancy-driven zonal flow. J. Phys. Oceanogr., 35, 175187.

    • Search Google Scholar
    • Export Citation
  • Kurganov, A., and E. Tadmor, 2000: New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J. Comput. Phys., 160, 241282.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363404.

    • Search Google Scholar
    • Export Citation
  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 25502562.

  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the last glacial maximum. Science, 316, 6669.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2003: Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. J. Phys. Oceanogr., 33, 23412354.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the Southern Ocean. Prog. Oceanogr., 70 (2–4), 331345.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., C. Hill, L. Perelman, and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102 (C3), 57335752.

    • Search Google Scholar
    • Export Citation
  • McIntosh, P. C., and T. J. McDougall, 1996: Isopycnal averaging and the residual mean circulation. J. Phys. Oceanogr., 26, 16551660.

  • Meredith, M. P., A. C. Naveira Garabato, A. M. C. Hogg, and R. Farneti, 2011: Sensitivity of the overturning circulation in the Southern Ocean to decadal changes in wind forcing. J. Climate, 25, 99110.

    • Search Google Scholar
    • Export Citation
  • Muench, R. D., and A. L. Gordon, 1995: Circulation and transport of water along the western Weddell Sea margin. J. Geophys. Res., 100 (C9), 18 50318 515.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., E. L. McDonagh, D. P. Stevens, K. J. Heywood, and R. J. Sanders, 2002: On the export of Antarctic bottom water from the Weddell Sea. Deep-Sea Res. II, 49, 47154742.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2011: A theory of deep stratification and overturning circulation in the ocean. J. Phys. Oceanogr., 41, 485502.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42,16521667.

    • Search Google Scholar
    • Export Citation
  • Nøst, O. A., M. Biuw, V. Tverberg, C. Lydersen, T. Hattermann, Q. Zhou, L. H. Smedsrud, and K. M. Kovacs, 2011: Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea. J. Geophys. Res.,116, C11014, doi:10.1029/2011JC006965.

  • Nowlin, W. D., Jr., and J. M. Klinck, 1986: The physics of the Antarctic circumpolar current. Rev. Geophys., 24, 469491.

  • Olbers, D., and M. Visbeck, 2005: A model of the zonally averaged stratification and overturning in the Southern Ocean. J. Phys. Oceanogr., 35, 11901205.

    • Search Google Scholar
    • Export Citation
  • Orsi, A. H., and C. L. Wiederwohl, 2009: A recount of Ross Sea waters. Deep-Sea Res. II, 56 (13–14), 778795.

  • Orsi, A. H., S. S. Jacobs, A. L. Gordon, and M. Visbeck, 2001: Cooling and ventilating the abyssal ocean. Geophys. Res. Lett., 28, 29232926.

    • Search Google Scholar
    • Export Citation
  • Ou, H. W., 2007: Watermass properties of the Antarctic Slope Front: A simple model. J. Phys. Oceanogr., 37, 5059.

  • Pavec, M., X. Carton, and G. Swaters, 2005: Baroclinic instability of frontal geostrophic currents over a slope. J. Phys. Oceanogr., 35, 911918.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Pennel, R., A. Stegner, and K. Béranger, 2012: Shelf impact on buoyant coastal current instabilities. J. Phys. Oceanogr., 42, 3961.

  • Plumb, R. A., and R. Ferrari, 2005: Transformed Eulerian-mean theory. Part I: Nonquasigeostrophic theory for eddies on a zonal-mean flow. J. Phys. Oceanogr., 35, 165174.

    • Search Google Scholar
    • Export Citation
  • Polvani, L. M., D. W. Waugh, G. J. P. Correa, and S. W. Son, 2011: Stratospheric ozone depletion: The main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J. Climate, 24, 795812.

    • Search Google Scholar
    • Export Citation
  • Radko, T., and J. Marshall, 2006: The Antarctic Circumpolar Current in three dimensions. J. Phys. Oceanogr., 36, 651669.

  • Russell, J. L., K. W. Dixon, A. Gnanadesikan, R. J. Stouffer, and J. R. Toggweiler, 2006: The Southern Hemisphere westerlies in a warming world: Propping open the door to the deep ocean. J. Climate, 19, 63826390.

    • Search Google Scholar
    • Export Citation
  • Saenko, O. A., A. S. Gupta, and P. Spence, 2011: On challenges in predicting bottom water transport in the Southern Ocean. J. Climate, 25, 13491356.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. T., and G. A. Schmidt, 2004: Southern Hemisphere climate response to ozone changes and greenhouse gas increases. Geophys. Res. Lett.,31, L18209, doi:10.1029/2004GL020724.

  • Shu, C. W., and S. Osher, 1989: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys., 83, 3278.

    • Search Google Scholar
    • Export Citation
  • Skinner, L., S. Fallon, C. Waelbroeck, E. Michel, and S. Barker, 2010: Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science, 328, 11471151.

    • Search Google Scholar
    • Export Citation
  • Son, S. W., and Coauthors, 2010: Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic deacon cell. J. Phys. Oceanogr., 30, 32123222.

  • Stewart, A. L., and A. F. Thompson, 2012: Sensitivity of the ocean's deep overturning circulation to easterly Antarctic winds. Geophys. Res. Lett.,39, L18604, doi:10.1029/2012GL053099.

  • Stone, P. H., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405418.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., J. L. Reid, and P. E. Robbins, 2003: Data-based meridional overturning streamfunctions for the global ocean. J. Climate, 16, 32133226.

    • Search Google Scholar
    • Export Citation
  • Thoma, M., A. Jenkins, D. Holland, and S. Jacobs, 2008: Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys. Res. Lett.,35, L18602, doi:10.1029/2008GL034939.

  • Thoma, M., K. Grosfeld, K. Makinson, and M. A. Lange, 2010: Modelling the impact of ocean warming on melting and water masses of ice shelves in the Eastern Weddell Sea. Ocean Dyn., 60, 479489.

    • Search Google Scholar
    • Export Citation
  • Thompson, A. F., and K. J. Heywood, 2008: Frontal structure and transport in the northwestern Weddell Sea. Deep-Sea Res. I, 55, 12291251.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., J. M. Wallace, and G. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13, 10181036.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., 2009: Shifting westerlies. Science, 323, 14341435.

  • Toggweiler, J. R., J. Russell, and S. R. Carson, 2006: Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography, 21, PA2005, doi:10.1029/2005PA001154.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, 745 pp.

  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402.

    • Search Google Scholar
    • Export Citation
  • Whitworth, T., III, A. H. Orsi, S.-J. Kim, W. D. Nowlin Jr., and R. A. Locarnini, 1998: Water masses and mixing near the Antarctic slope front. Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, S. S. Jacobs and R. F. Weiss, Ed., Antarctic Research Series, Amer. Geophys. Union, 1–27.

  • Wolfe, C. L., and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810.

  • Zhang, Y., J. Pedlosky, and G. R. Flierl, 2011: Cross-shelf and out-of-bay transport driven by an open-ocean current. J. Phys. Oceanogr., 41, 21682186.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 5 5 5

Connecting Antarctic Cross-Slope Exchange with Southern Ocean Overturning

View More View Less
  • 1 Environmental Sciences and Engineering, California Institute of Technology, Pasadena, California
Restricted access

Abstract

Previous idealized investigations of Southern Ocean overturning have omitted its connection with the Antarctic continental shelves, leaving the influence of shelf processes on Antarctic Bottom Water (AABW) export unconsidered. In particular, the contribution of mesoscale eddies to setting the stratification and overturning circulation in the Antarctic Circumpolar Current (ACC) is well established, yet their role in cross-shelf exchange of water masses remains unclear. This study proposes a residual-mean theory that elucidates the connection between Antarctic cross-shelf exchange and overturning in the ACC, and the contribution of mesoscale eddies to the export of AABW. The authors motivate and verify this theory using an eddy-resolving process model of a sector of the Southern Ocean. The strength and pattern of the simulated overturning circulation strongly resemble those of the real ocean and are closely captured by the residual-mean theory. Over the continental slope baroclinic instability is suppressed, and so transport by mesoscale eddies is reduced. This suppression of the eddy fluxes also gives rise to the steep “V”-shaped isopycnals that characterize the Antarctic Slope Front in AABW-forming regions of the continental shelf. Furthermore, to produce water on the continental shelf that is dense enough to sink to the deep ocean, the deep overturning cell must be at least comparable in strength to wind-driven mean overturning on the continental slope. This results in a strong sensitivity of the deep overturning strength to changes in the polar easterly winds.

Corresponding author address: Andrew L. Stewart, Environmental Science and Engineering, MC 131-24, California Institute of Technology, Pasadena, CA 91125. E-mail: stewart@gps.caltech.edu

Abstract

Previous idealized investigations of Southern Ocean overturning have omitted its connection with the Antarctic continental shelves, leaving the influence of shelf processes on Antarctic Bottom Water (AABW) export unconsidered. In particular, the contribution of mesoscale eddies to setting the stratification and overturning circulation in the Antarctic Circumpolar Current (ACC) is well established, yet their role in cross-shelf exchange of water masses remains unclear. This study proposes a residual-mean theory that elucidates the connection between Antarctic cross-shelf exchange and overturning in the ACC, and the contribution of mesoscale eddies to the export of AABW. The authors motivate and verify this theory using an eddy-resolving process model of a sector of the Southern Ocean. The strength and pattern of the simulated overturning circulation strongly resemble those of the real ocean and are closely captured by the residual-mean theory. Over the continental slope baroclinic instability is suppressed, and so transport by mesoscale eddies is reduced. This suppression of the eddy fluxes also gives rise to the steep “V”-shaped isopycnals that characterize the Antarctic Slope Front in AABW-forming regions of the continental shelf. Furthermore, to produce water on the continental shelf that is dense enough to sink to the deep ocean, the deep overturning cell must be at least comparable in strength to wind-driven mean overturning on the continental slope. This results in a strong sensitivity of the deep overturning strength to changes in the polar easterly winds.

Corresponding author address: Andrew L. Stewart, Environmental Science and Engineering, MC 131-24, California Institute of Technology, Pasadena, CA 91125. E-mail: stewart@gps.caltech.edu
Save