• Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

  • Badin, G., and R. G. Williams, 2010: On the buoyancy forcing and residual circulation in the Southern Ocean: The feedback from Ekman and eddy transfer. J. Phys. Oceanogr., 40, 295310.

    • Search Google Scholar
    • Export Citation
  • Badin, G., R. G. Williams, and J. Sharples, 2010: Water-mass transformation in the shelf seas. J. Mar. Res., 68, 189214.

  • Berry, D. I., and E. C. Kent, 2011: Air-sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001.

    • Search Google Scholar
    • Export Citation
  • Cerovecki, I., L. D. Talley, and M. R. Mazloff, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306.

    • Search Google Scholar
    • Export Citation
  • Cerovecki, I., L. D. Talley, M. R. Mazloff, and G. Maze, 2013: Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean State Estimate. J. Phys. Oceanogr., 43, 14851511.

    • Search Google Scholar
    • Export Citation
  • Downes, S. M., A. Gnanadesikan, S. M. Griffies, and J. L. Sarmiento, 2011: Water mass exchange in the Southern Ocean in coupled climate models. J. Phys. Oceanogr., 41, 17561771.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2003: Float observations of the Southern Ocean. Part I: Estimating mean fields, bottom velocities, and topographic steering. J. Phys. Oceanogr., 33, 11671181.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., T. B. Sanford, and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422, 513515.

    • Search Google Scholar
    • Export Citation
  • Hanawa, K., and L. D. Talley, 2001: Mode waters. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 373–386.

  • Heywood, K., A. C. Naveira-Garabato, and D. P. Stevens, 2002: High mixing rates in the abyssal Southern Ocean. Nature, 415, 10111014.

    • Search Google Scholar
    • Export Citation
  • Ito, T., and J. Marshall, 2008: Control of lower-limb overturning circulation in the Southern Ocean by diapycnal mixing and mesoscale eddy transfer. J. Phys. Oceanogr., 38, 28322845.

    • Search Google Scholar
    • Export Citation
  • Iudicone, D., G. Madec, and T. J. McDougall, 2008: Water mass transformations in a neutral density framework and the key role of light penetration. J. Phys. Oceanogr., 38, 13571376.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world's oceans. J. Phys. Oceanogr., 27, 237263.

  • Kalnay, E., and Coauthors, 1998: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470.

  • Killworth, P. D., 1992: An equivalent-barotropic mode in the fine-resolution Antarctic model. J. Phys. Oceanogr., 22, 13791387.

  • Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr., 40, 16901709.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576.

    • Search Google Scholar
    • Export Citation
  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010: Temperature. Vol. 1, World Ocean Atlas 2009, NOAA Atlas NESDIS 68, 184 pp.

  • Marsh, R., A. J. G. Nurser, A. P. Megann, and A. L. New, 2000: Water mass transformation in the Southern Ocean of a global isopycnal coordinate GCM. J. Phys. Oceanogr., 30, 10131045.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., 1997: Subduction of water masses in an eddying ocean. J. Mar. Res., 55, 201222.

  • Marshall, J., and T. Radko, 2006: A model of the upper branch of the meridional overturning of the Southern Ocean. Prog. Oceanogr., 70, 331345.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., D. Jamous, and J. Nilsson, 1999: Reconciling thermodynamic and dynamic methods of computation of water mass transformation rates. Deep-Sea Res. I, 46, 545572.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N. A., and P. P. Niiler, 2005: Hybrid decade-mean global sea level with mesoscale resolution. Recent Advances in Marine Science and Technology, N. Saxena, Ed., PACON International, 55–59.

  • McCartney, M., 1977: Subantarctic Mode Water. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. V. Angel, Ed., Pergamon, 103–119.

  • McDougall, T. J., 1987a: Neutral surfaces. J. Phys. Oceanogr., 17, 19501964.

  • McDougall, T. J., 1987b: Thermobaracity, cabbeling and water mass conversion. J. Geophys. Res., 92 (C11), 54485464.

  • Naveira-Garabato, A. C., K. L. Polzin, B. A. King, K. J. Heywood, and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and R. Ferrari, 2010: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 15011519.

    • Search Google Scholar
    • Export Citation
  • Nurser, A. J. G., R. Marsh, and R. G. Williams, 1999: Diagnosing water mass formation from air–sea fluxes and surface mixing. J. Phys. Oceanogr., 29, 14681487.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389.

  • Polzin, K. L., J. M. J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent mixing. J. Phys. Oceanogr., 25, 306328.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., C. Hughes, and D. Olbers, 2001: The Antarctic Circumpolar Current System. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 271–302.

  • Sloyan, B., and S. R. Rintoul, 2001: The Southern Ocean limb of the global deep overturning circulation. J. Phys. Oceanogr., 31, 143173.

    • Search Google Scholar
    • Export Citation
  • Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. J. Phys. Oceanogr., 30, 32123222.

  • Suga, T., and L. D. Talley, 1995: Antarctic Intermediate Water circulation in the tropical and subtropical Atlantic. J. Geophys. Res., 100, 13 44113 453.

    • Search Google Scholar
    • Export Citation
  • Tapley, B. D., D. P. Chambers, S. Bettadpur, and J. C. Ries, 2003: Large scale ocean circulation from the GRACE GGM01 geoid. Geophys. Res. Lett., 30, 2163, doi:10.1029/2003GL018622.

    • Search Google Scholar
    • Export Citation
  • Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34, 187195.

  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett.,39, L18612, doi:10.1029/2012GL053196.

  • Williams, R. G., and M. Follows, 2011: Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms. Cambridge University Press, 416 pp.

  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the objectively analyzed air–sea fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution Tech. Rep. OA 2008 01, 64 pp.

  • Zika, J. D., B. M. Sloyan, and T. J. McDougall, 2009: Diagnosing the Southern Ocean overturning from tracer fields. J. Phys. Oceanogr., 39, 29262940.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 3 3 3

Water Mass Transformations in the Southern Ocean Diagnosed from Observations: Contrasting Effects of Air–Sea Fluxes and Diapycnal Mixing

View More View Less
  • 1 Institute of Oceanography, University of Hamburg, Hamburg, Germany
  • | 2 School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
  • | 3 Physical Oceanography Laboratory, Ocean University of China, Qingdao, China
Restricted access

Abstract

Transformation and formation rates of water masses in the Southern Ocean are estimated in a neutral-surface framework using air–sea fluxes of heat and freshwater together with in situ estimates of diapycnal mixing. The air–sea fluxes are taken from two different climatologies and a reanalysis dataset, while the diapycnal mixing is estimated from a mixing parameterization applied to five years of Argo float data. Air–sea fluxes lead to a large transformation directed toward lighter waters, typically from −45 to −63 Sv (1 Sv ≡ 106 m3 s−1) centered at γ = 27.2, while interior diapycnal mixing leads to two weaker peaks in transformation, directed toward denser waters, 8 Sv centered at γ = 27.8, and directed toward lighter waters, −16 Sv centered at γ = 28.3. Hence, air–sea fluxes and interior diapycnal mixing are important in transforming different water masses within the Southern Ocean. The transformation of dense to lighter waters by diapycnal mixing within the Southern Ocean is slightly larger, though comparable in magnitude, to the transformation of lighter to dense waters by air–sea fluxes in the North Atlantic. However, there are significant uncertainties in the authors' estimates with errors of at least ±5 W m−2 in air–sea fluxes, a factor 4 uncertainty in diapycnal mixing and limited coverage of air–sea fluxes in the high latitudes and Argo data in the Pacific. These water mass transformations partly relate to the circulation in density space: air–sea fluxes provide a general lightening along the core of the Antarctic Circumpolar Current and diapycnal diffusivity is enhanced at middepths along the current.

Additional affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey.

Corresponding author address: Gualtiero Badin, Institute of Oceanography, University of Hamburg, Bundesstrasse 53, D-20146 Hamburg, Germany. E-mail: gualtiero.badin@zmaw.de

Abstract

Transformation and formation rates of water masses in the Southern Ocean are estimated in a neutral-surface framework using air–sea fluxes of heat and freshwater together with in situ estimates of diapycnal mixing. The air–sea fluxes are taken from two different climatologies and a reanalysis dataset, while the diapycnal mixing is estimated from a mixing parameterization applied to five years of Argo float data. Air–sea fluxes lead to a large transformation directed toward lighter waters, typically from −45 to −63 Sv (1 Sv ≡ 106 m3 s−1) centered at γ = 27.2, while interior diapycnal mixing leads to two weaker peaks in transformation, directed toward denser waters, 8 Sv centered at γ = 27.8, and directed toward lighter waters, −16 Sv centered at γ = 28.3. Hence, air–sea fluxes and interior diapycnal mixing are important in transforming different water masses within the Southern Ocean. The transformation of dense to lighter waters by diapycnal mixing within the Southern Ocean is slightly larger, though comparable in magnitude, to the transformation of lighter to dense waters by air–sea fluxes in the North Atlantic. However, there are significant uncertainties in the authors' estimates with errors of at least ±5 W m−2 in air–sea fluxes, a factor 4 uncertainty in diapycnal mixing and limited coverage of air–sea fluxes in the high latitudes and Argo data in the Pacific. These water mass transformations partly relate to the circulation in density space: air–sea fluxes provide a general lightening along the core of the Antarctic Circumpolar Current and diapycnal diffusivity is enhanced at middepths along the current.

Additional affiliation: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey.

Corresponding author address: Gualtiero Badin, Institute of Oceanography, University of Hamburg, Bundesstrasse 53, D-20146 Hamburg, Germany. E-mail: gualtiero.badin@zmaw.de
Save