• Arbic, B. K., and C. Garrett, 2010: A coupled oscillator model of shelf and ocean tides. Cont. Shelf Res., 30, 564574, doi:10.1016/j.csr.2009.07.008.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons, 2004a: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res. II, 51, 30693101.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., D. R. MacAyeal, J. X. Mitrovica, and G. A. Milne, 2004b: Ocean tides and Heinrich events. Nature, 432, 460.

  • Arbic, B. K., P. St-Laurent, G. Sutherland, and C. Garrett, 2007: On the resonance and influence of the tides in Ungava Bay and Hudson Strait. Geophys. Res. Lett., 34, L17606, doi:10.1029/2007GL030845.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., J. X. Mitrovica, D. R. MacAyeal, and G. A. Milne, 2008: On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events. Paleoceanography, 23, PA3211, doi:10.1029/2007PA001573.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., R. H. Karsten, and C. Garrett, 2009: On tidal resonance in the global ocean and the back-effect of coastal tides upon open-ocean tides. Atmos.–Ocean, 47, 239266, doi:10.3137/OC311.2009.

    • Search Google Scholar
    • Export Citation
  • Arfken, G. B., and H. J. Weber, 2001: Mathematical Methods For Physicists. 5th ed. Academic Press, 1096 pp.

  • Carrere, L., and F. Lyard, 2003: Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing–comparisons with observations. Geophys. Res. Lett., 30, 1275, doi:10.1029/2002GL016473.

    • Search Google Scholar
    • Export Citation
  • Cartwright, D. E., 1975: A subharmonic lunar tide in the seas off Western Europe. Nature, 257, 277280.

  • Cartwright, D. E., 1977: Ocean tides. Rep. Prog. Phys., 40, 665708.

  • Clarke, A. J., 1991: The dynamics of barotropic tides over the continental shelf and slope (review). Tidal Hydrodynamics, B. B. Parker, Ed., John Wiley and Sons, 79–108.

  • Cummins, P. F., R. H. Karsten, and B. K. Arbic, 2010: The semi-diurnal tide in Hudson Strait as a resonant channel oscillation. Atmos.–Ocean, 48, 163176, doi:10.3137/OC307.2010.

    • Search Google Scholar
    • Export Citation
  • Defant, A., 1961: Physical Oceanography. Vol. 2. Pergamon Press, 598 pp.

  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2001: Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J. Geophys. Res., 106 (C10), 22 47522 502.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2003: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry. Geophys. Res. Lett., 30, 1907, doi:10.1029/2003GL017676.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., A. F. Bennett, and M. G. G. Foreman, 1994: TOPEX/Poseidon tides estimated using a global inverse model. J. Geophys. Res., 99 (C12), 24 82124 852.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., R. D. Ray, and B. G. Bills, 2004: Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum. J. Geophys. Res., 109, C03003, doi:10.1029/2003JC001973.

    • Search Google Scholar
    • Export Citation
  • Garner, S. T., 2005: A topographic drag closure built on an analytical base flux. J. Atmos. Sci., 62, 23022315.

  • Garrett, C., 1972: Tidal resonance in the Bay of Fundy and Gulf of Maine. Nature, 238, 441443.

  • Garrett, C., and D. Greenberg, 1977: Predicting changes in tidal regime: The open boundary problem. J. Phys. Oceanogr., 7, 171181.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Godin, G., 1988: Tides. Anadyomene, 348 pp.

  • Green, J. A. M., 2010: Ocean tides and resonance. Ocean Dyn., 60, 12431253, doi:10.1007/s10236-010-0331-1.

  • Griffiths, S. D., and W. R. Peltier, 2008: Megatides in the Arctic Ocean under glacial conditions. Geophys. Res. Lett., 35, L08605, doi:10.1029/2008GL033263.

    • Search Google Scholar
    • Export Citation
  • Griffiths, S. D., and W. R. Peltier, 2009: Modelling of polar ocean tides at the Last Glacial Maximum: Amplification, sensitivity, and climatological implications. J. Climate, 22, 29052924.

    • Search Google Scholar
    • Export Citation
  • Heath, R. A., 1981: Estimates of the resonant period and Q in the semi-diurnal tidal band in the North Atlantic and Pacific Oceans. Deep-Sea Res., 28, 481493.

    • Search Google Scholar
    • Export Citation
  • Hendershott, M. C., 1972: The effects of solid earth deformation on global ocean tides. Geophys. J. Roy. Astron. Soc., 29, 389402.

  • Hendershott, M. C., 1981: Long waves and ocean tides. Evolution of Physical Oceanography: Scientific Surveys in Honor of Henry Stommel, B. A. Warren and C. Wunsch, Eds., The MIT Press, 291–341.

  • Hill, D. F., S. D. Griffiths, W. R. Peltier, B. P. Horton, and T. E. Tornqvist, 2011: High-resolution numerical modeling of tides in the western Atlantic, Gulf of Mexico, and Caribbean Sea during the Holocene. J. Geophys. Res., 116, C10014, doi:10.1029/2010JC006896.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and L. C. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814.

  • Laplace, P. S., 1775: Recherches sur plusieurs points du système du monde. Mem. Acad. Roy. Sci. Paris,88, 75–182. [Reprinted in Oeuvres Complètes de Laplace, Gauthier-Villars, Paris, 9 (1893)].

  • Laplace, P. S., 1776: Recherches sur plusieurs points du système du monde. Mem. Acad. Roy. Sci. Paris,89, 177–264. [Reprinted in Oeuvres Complètes de Laplace, Gauthier-Villars, Paris, 9 (1893)].

  • Longuet-Higgins, M. S., and G. S. Pond, 1970: The free oscillations of fluid on a hemisphere bounded by meridians of longitude. Philos. Trans. Roy. Soc. London, A266, 193223.

    • Search Google Scholar
    • Export Citation
  • Lyard, F., F. Lefevre, T. Letellier, and O. Francis, 2006: Modelling the global ocean tides: Modern insights from FES2004. Ocean Dyn., 56, 394415, doi:10.1007/s10236-006-0086-x.

    • Search Google Scholar
    • Export Citation
  • Müller, M., 2007: The free oscillations of the world ocean in the period range 8 to 165 hours including the full loading effect. Geophys. Res. Lett., 34, L05606, doi:10.1029/2006GL028870.

    • Search Google Scholar
    • Export Citation
  • Müller, M., 2008: Synthesis of forced oscillations, Part I: Tidal dynamics and the influence of the loading and self-attraction effect. Ocean Modell., 20, 207222, doi:10.1016/j.ocemod.2007.09.001.

    • Search Google Scholar
    • Export Citation
  • Müller, M., 2009: A Large Spectrum of Free Oscillations of the World Ocean Including the Full Ocean Loading and Self-Attraction Effects. Vol. 14, Hamburg Studies on Maritime Affairs, 118 pp.

  • Müller, M., B. K. Arbic, and J. X. Mitrovica, 2011: Secular trends in ocean tides: Observations and model results. J. Geophys. Res., 116, C05013, doi:10.1029/2010JC006387.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1984: Normal modes of the World Ocean. Part IV: Synthesis of diurnal and semidiurnal tides. J. Phys. Oceanogr., 14, 15321550.

    • Search Google Scholar
    • Export Citation
  • Platzman, G. W., 1991: Tidal evidence for ocean normal modes. Tidal Hydrodynamics, B. B. Parker, Ed., John Wiley and Sons, 13–26.

  • Platzman, G. W., G. A. Curtis, K. S. Hansen, and R. D. Slater, 1981: Normal modes of the world ocean. Part II: Description of modes in the period range 8 to 80 hours. J. Phys. Oceanogr., 11, 579603.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396.

    • Search Google Scholar
    • Export Citation
  • Proudman, J., 1953: Dynamical Oceanography. Methven and Co., 409 pp.

  • Rao, D. B., 1966: Free gravitational oscillations in rotating rectangular basins. J. Fluid Mech., 25, 523555.

  • Ray, R. D., 1999: A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. National Aeronautics and Space Administration Tech. Memo. NASA/TM-1999-209478, 58 pp.

  • Ray, R. D., 2001: Resonant third-degree diurnal tides in the seas off Western Europe. J. Phys. Oceanogr., 31, 35813586.

  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res., 51, 30433068.

    • Search Google Scholar
    • Export Citation
  • Sutherland, G., C. Garrett, and M. Foreman, 2005: Tidal resonance in Juan de Fuca Strait and the Strait of Georgia. J. Phys. Oceanogr.,35, 1279–1286.

  • Thomas, M., and J. Sündermann, 1999: Tides and tidal torques of the world ocean since the last glacial maximum. J. Geophys. Res., 104 (C2), 31593183.

    • Search Google Scholar
    • Export Citation
  • Timko, P. G., B. K. Arbic, J. G. Richman, R. B. Scott, E. J. Metzger, and A. J. Wallcraft, 2012: Skill tests of three-dimensional tidal currents in a global ocean model: A look at the North Atlantic. J. Geophys. Res., 117, C08014, doi:10.1029/2011JC007617.

    • Search Google Scholar
    • Export Citation
  • Uehara, K., J. D. Scourse, K. J. Horsburgh, K. Lambeck, and A. P. Purcell, 2006: Tidal evolution of the northwest European shelf seas from the Last Glacial Maximum to the present. J. Geophys. Res., 111, C09025, doi:10.1029/2006JC003531.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1972: Bermuda sea level in relation to tides, weather, and baroclinic fluctuations. Rev. Geophys., 10, 149.

  • Zahel, W., and M. Müller, 2005: The computation of the free barotropic oscillations of a global ocean model including friction and loading effects. Ocean Dyn., 55, 137161, doi:10.1007/s10236-005-0029-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4 4 4
PDF Downloads 1 1 1

On the Resonance and Shelf/Open-Ocean Coupling of the Global Diurnal Tides

View More View Less
  • 1 Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan
  • | 2 Department of Physics, University of Michigan, Ann Arbor, Michigan
  • | 3 Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan
  • | 4 School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada
  • | 5 Department of Physics and Center for Ocean–Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida
Restricted access

Abstract

The resonance of diurnal tidal elevations is investigated with a forward ocean tide model run in a realistic near-global domain and a synthesis of free oscillations (normal modes) computed for realistic global ocean geometries and ocean physics. As a prelude to performing the forward ocean tide simulations, the topographic wave drag, which is now commonly employed in forward ocean tide models, is tuned specifically for diurnal tides. The synthesis of global free oscillations predicts reasonably well the forward ocean diurnal tide model sensitivity to changes in the frequency, zonal structure, and meridional structure of the astronomical diurnal tidal forcing. Three global free oscillations that are important for understanding diurnal tides as a superposition of forced-damped, resonant, free oscillations are identified. An admittance analysis of the frequency sweep experiments demonstrates that some coastal locations such as the Sea of Okhotsk are resonant to diurnal tidal forcing. As in earlier work done with semidiurnal tides, a series of simulations are performed in which regions possessing significant coastal diurnal tides are blocked out. The largest perturbations to the open-ocean diurnal tides take place in Blocked Sea of Okhotsk experiments. Lesser but still significant perturbations also arise from the blocking out of other regions of large diurnal tidal elevations or dissipation. Interpretation of the results is made more complex, however, by the fact that substantial perturbations also arise from blocking out regions where neither tidal elevations nor dissipation are large. The “blocking” experiments are relevant to understanding tides of the ice age, during which lower sea levels entail a reduced area of continental shelves.

These authors contributed equally to this work.

Current affiliation: Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway.

Current affiliation: Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida.

Corresponding author address: Dr. Brian K. Arbic, Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005. E-mail: arbic@umich.edu

Abstract

The resonance of diurnal tidal elevations is investigated with a forward ocean tide model run in a realistic near-global domain and a synthesis of free oscillations (normal modes) computed for realistic global ocean geometries and ocean physics. As a prelude to performing the forward ocean tide simulations, the topographic wave drag, which is now commonly employed in forward ocean tide models, is tuned specifically for diurnal tides. The synthesis of global free oscillations predicts reasonably well the forward ocean diurnal tide model sensitivity to changes in the frequency, zonal structure, and meridional structure of the astronomical diurnal tidal forcing. Three global free oscillations that are important for understanding diurnal tides as a superposition of forced-damped, resonant, free oscillations are identified. An admittance analysis of the frequency sweep experiments demonstrates that some coastal locations such as the Sea of Okhotsk are resonant to diurnal tidal forcing. As in earlier work done with semidiurnal tides, a series of simulations are performed in which regions possessing significant coastal diurnal tides are blocked out. The largest perturbations to the open-ocean diurnal tides take place in Blocked Sea of Okhotsk experiments. Lesser but still significant perturbations also arise from the blocking out of other regions of large diurnal tidal elevations or dissipation. Interpretation of the results is made more complex, however, by the fact that substantial perturbations also arise from blocking out regions where neither tidal elevations nor dissipation are large. The “blocking” experiments are relevant to understanding tides of the ice age, during which lower sea levels entail a reduced area of continental shelves.

These authors contributed equally to this work.

Current affiliation: Research and Development Department, Norwegian Meteorological Institute, Oslo, Norway.

Current affiliation: Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, Florida.

Corresponding author address: Dr. Brian K. Arbic, Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005. E-mail: arbic@umich.edu
Save