• Andreas, E. L, L. Mahrt, and D. Vickers, 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 2520–2537.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and W. L. Peirson, 1998: Tangential stress beneath wind-driven air-water interfaces. J. Fluid Mech., 364, 115145.

  • Belcher, S. E., and J. C. R. Hunt, 1993: Turbulent shear flow over slowly moving waves. J. Fluid Mech.,251, 109–148.

  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Bigorre, S., R. A. Weller, J. Lord, J. B. Edson, and J. D. Ware, 2013: A surface mooring for air–sea interaction research in the Gulf Stream. Part II: Analysis of the observations and their accuracies. J. Atmos. Oceanic Technol.,30, 450–469.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., D. G. Vincent, and W. L. Wood, 1999: A flux parameterization including the effects of capillary waves and sea state. J. Atmos. Sci., 56, 11231139.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., 1988: A note on the Businger–Dyer profiles. Bound.-Layer Meteor., 42, 145151.

  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181189.

    • Search Google Scholar
    • Export Citation
  • Chalikov, D. V., 1986: Numerical simulation of the boundary layer above waves. Bound.-Layer Meteor., 34, 6398.

  • Chalikov, D. V., 1995: The parameterization of the wave boundary layer. J. Phys. Oceanogr., 25, 13351349.

  • Chalikov, D. V., and S. Rainchik, 2011: Coupled numerical modeling of wind and waves and the theory of the wave boundary layer. Bound.-Layer Meteor., 138, 141.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640.

  • Dobson, F. W., S. D. Smith, and R. J. Anderson, 1994: Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmos.–Ocean, 32, 237256.

    • Search Google Scholar
    • Export Citation
  • Dobson, F. W., R. J. Anderson, P. K. Taylor, and M. J. Yelland, 1999: Storm Wind Study II: Open ocean wind and sea state measurements. Proceedings of Symposium on the Wind-Driven Air–Sea Interface: Electromagnetic and Acoustic Sensing, Wave Dynamics and Turbulent Fluxes, M. L. Banner, Ed., University of New South Wales, 295–296.

  • Donelan, M. A., 1990: Air–sea interaction. The Sea, B. LeMehaute and D. M. Hanes, Eds., Ocean Engineering Science, Vol. 9, Wiley and Sons, 239–292.

  • Donelan, M. A., M. G. Skafel, H. Graber, P. Liu, D. Schwab, and S. Venkatesh, 1992: On the growth rate of wind-generated waves. Atmos.–Ocean, 30, 457478.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., F. W. Dobson, S. D. Smith, and R. J. Anderson, 1993: On the dependence of sea surface roughness on wave development. J. Phys. Oceanogr., 23, 21432149.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., H. C. Graber, and M. A. Donelan, 1999: Evidence for the effects of swell and unsteady winds on marine wind stress. J. Phys. Oceanogr.,29, 1583–1864.

  • Drennan, W. M., P. K. Taylor, and M. J. Yelland, 2005: Parameterizing the sea surface roughness. J. Phys. Oceanogr.,35, 835–848.

  • Edson, J. B., and C. W. Fairall, 1998: Similarity relationships in the marine atmospheric surface layer for terms in the TKE and scalar variance budgets. J. Atmos. Sci., 55, 23112328.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., A. A. Hinton, K. E. Prada, J. E. Hare, and C. W. Fairall, 1998: Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Oceanic Technol., 15, 547562.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., C. J. Zappa, J. A. Ware, W. R. McGillis, and J. E. Hare, 2004: Scalar flux profile relationships over the open ocean. J. Geophys. Res., 109, C08S09, doi:10.1029/2003JC001960.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2007: The Coupled Boundary Layers and Air–Sea Transfer Experiment in low winds. Bull. Amer. Meteor. Soc., 88, 341356.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air–sea fluxes for TOGA COARE. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Foreman, R. J., and S. Emeis, 2010: Revisiting the definition of the drag coefficient in the marine atmospheric boundary layer. J. Phys. Oceanogr., 40, 23252332.

    • Search Google Scholar
    • Export Citation
  • Friehe, C. A., J. A. Smith, K. F. Rieder, N. E. Huang, J.-P. Giovanangeli, and G. L. Geernaert, 2001: Wind, stress and wave directions. Wind Stress over the Ocean, I. S. F. Jones and Y. Toba, Eds., Cambridge University Press, 232–241.

  • Geernaert, G. L., K. B. Katsaros, and K. Richter, 1986: Variation of the drag coefficient and its dependence on sea state. J. Geophys. Res., 91 (C6), 76677679.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., and C. W. Fairall, 2001: Upward momentum transfer in the marine boundary layer. J. Phys. Oceanogr., 31, 16981711.

  • Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller, 2003: Wind stress vector over ocean waves. J. Phys. Oceanogr., 33, 24082429.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., and S. E. Belcher, 2008: Wave-driven wind jets in the marine atmospheric boundary layer. J. Atmos. Sci., 65, 26462660.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., S. E. Belcher, and P. P. Sullivan, 2010: A global climatology of wind–wave interaction. J. Phys. Oceanogr., 40, 12631282.

    • Search Google Scholar
    • Export Citation
  • Hare, J. E., T. Hara, J. B. Edson, and J. M. Wilczak, 1997: A similarity analysis of the structure of air flow over surface waves. J. Phys. Oceanogr., 27, 10181037.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2011: Sea surface roughness and drag coefficient as functions of neutral wind speed. J. Phys. Oceanogr., 41, 247251.

  • Hicks, B. B., 1978: Some limitations of dimensional analysis and power laws. Bound.-Layer Meteor., 14, 567569.

  • Hristov, T. S., S. D. Miller, and C. A. Friehe, 2003: Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature, 422, 5558.

    • Search Google Scholar
    • Export Citation
  • Hsu, S. A., 1974: A dynamic roughness equation and its application to wind stress determination at the air–sea interface. J. Phys. Oceanogr., 4, 116120.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., and H. Kofoed-Hansen, 2000: Influence of bottom friction on sea surface roughness and its impact on shallow water wind wave modeling. J. Phys. Oceanogr., 30, 17431756.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., and H. J. Vested, 1992: Effects of water waves on wind shear stress for current modeling. J. Atmos. Oceanic Technol., 9, 850861.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. K., J. Højstrup, H. J. Vested, and S. E. Larsen, 1998: On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28, 17021716.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S. A., 1973: The Physics of AirSea Interaction. Cambridge University Press, 273 pp.

  • Kraus, E. B., and J. A. Businger, 1994: Atmosphere-Ocean Interaction. Oxford University Press, 362 pp.

  • Kudryavtsev, V. N., V. K. Makin, and J. F. Meirink, 2001: Simplified model of the air flow above the waves. Bound.-Layer Meteor., 100, 6390.

    • Search Google Scholar
    • Export Citation
  • Lange, B., H. K. Johnson, S. Larsen, J. Højstrup, H. Kofoed-Hansen, and M. J. Yelland, 2004: On detection of a wave age dependency for the sea surface roughness. J. Phys. Oceanogr., 34, 14411458.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Howell, J. Højstrup, J. M. Wilczak, J. B. Edson, and J. E. Hare, 1996: Sea surface drag coefficients in RASEX. J. Geophys. Res., 101, 14 32714 335.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Edson, J. Sun, J. Højstrup, J. Hare, and J. Wilczak, 1998: Heat flux in the coastal zone. Bound.-Layer Meteor., 86, 421446.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Edson, J. Wilczak, J. Hare, and J. Højstrup, 2001: Vertical structure of offshore flow during RASEX. Bound.-Layer Meteor., 100, 4761.

    • Search Google Scholar
    • Export Citation
  • Marshall J., and Coauthors, 2009: Observing the cycle of convection and restratification over the Gulf Stream system and the subtropical gyre of the North Atlantic Ocean: Preliminary results from the CLIMODE field campaign. Bull. Amer. Meteor., Soc., 90, 13371350.

    • Search Google Scholar
    • Export Citation
  • Martin, M. J., 1998: An investigation of momentum exchange parameterizations and atmospheric forcing for the coastal mixing and optics program. M.S. thesis, Massachusetts Institute of Technology, Boston, MA, and the Woods Hole Oceanographic Institution, Woods Hole, MA, 83 pp.

  • Mastenbroek, C. V., V. K. Makin, M. H. Garrat, and J. P. Giovanangeli, 1996: Experimental evidence of the rapid distortion of the turbulence in the air flow over water waves. J. Fluid Mech., 318, 273302.

    • Search Google Scholar
    • Export Citation
  • Miles, J. W., 1957: On the generation of surface waves by shear flows. J. Fluid Mech., 3, 185204.

  • Miller, S. D., T. S. Hristov, J. B. Edson, and C. A. Friehe, 2008: Platform motion effects on measurements of turbulence and air–sea exchange over the open ocean. J. Atmos. Oceanic Technol., 25, 16831694.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst., Akad. Nauk SSSR,151, 163187.

    • Search Google Scholar
    • Export Citation
  • Moon, I.-J., T. Hara, I. Ginis, S. E. Belcher, and H. L. Tolman, 2004: Effect of surface waves on air–sea momentum exchange. Part I: Effect of mature and growing seas. J. Atmos. Sci., 61, 23212333.

    • Search Google Scholar
    • Export Citation
  • Nordeng, T. E., 1991: On the wave age dependent drag coefficient and roughness length at sea. J. Geophys. Res., 96, 71677174.

  • Obukhov, A. M., 1971: Turbulence in an atmosphere with a non-uniform temperature. Bound.-Layer Meteor.,2, 729.

  • Oost, W. A., G. J. Komen, C. M. J. Jacobs, and C. van Oort, 2002: New evidence for a relation between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409438.

    • Search Google Scholar
    • Export Citation
  • Persson, O. G. P., C. W. Fairall, E. L Andreas, P. S. Guest, and D. K. Perovich, 2002: Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. J. Geophys. Res., 107, 8045, doi:10.1029/2000JC000705.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 1982: A relationship between wind stress and wave slope. J. Geophys. Res., 87, 19611967.

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Smedman, A. S., M. Tjernström, and U. Högström, 1994: The near-neutral marine atmospheric boundary layer with no surface shearing stress: a case study. J. Atmos. Sci., 51, 33993411.

    • Search Google Scholar
    • Export Citation
  • Smedman, A. S., U. Högström, H. Bergström, A. Rutgersson, K. K. Kahma, and H. Pettersson, 1999: A case study of air–sea interaction during swell conditions. J. Geophys. Res., 104 (C11), 25 83325 852.

    • Search Google Scholar
    • Export Citation
  • Smedman, A. S., X. G. Larsén, U. Högström, K. K. Kahma, and H. Pettersson, 2003: Effect of sea state on the momentum exchange over the sea during neutral conditions. J. Geophys. Res., 108, 3367, doi:10.1029/2002JC001526.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., 1988: Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. J. Geophys. Res., 93 (C12), 15 46715 472.

    • Search Google Scholar
    • Export Citation
  • Smith, S. D., and Coauthors, 1992: Sea surface wind stress and drag coefficients: The HEXOS results. Bound.-Layer Meteor., 60, 109142.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. B. Edson, T. Hristov, and J. C. McWilliams, 2008: Large-eddy simulations and observations of atmospheric marine boundary layers above non-equilibrium surface waves. J. Atmos. Sci., 65, 12251245.

    • Search Google Scholar
    • Export Citation
  • Taylor, P. K., and M. J. Yelland, 2001: The dependence of sea surface roughness on the height and steepness of the waves. J. Phys. Oceanogr., 31, 572590.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1999: Observations of non-dimensional wind shear in the coastal zone. Quart. J. Roy. Meteor. Soc., 125, 26852702.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., and R. Lukas, 1992: TOGA COARE: The coupled ocean–atmosphere response experiment. Bull. Amer. Meteor. Soc.,73, 1377–1416.

  • Weller, R. A., S. P. Bigorre, J. Lord, J. D. Ware, and J. B. Edson, 2012: A surface mooring for air–sea interaction research in the Gulf Stream. Part I: Mooring design and instrumentation. J. Atmos. Oceanic Technol., 29, 13631376.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 168 168 168
PDF Downloads 67 67 67

On the Exchange of Momentum over the Open Ocean

View More View Less
  • 1 * Department of Marine Sciences, University of Connecticut, Groton, Connecticut
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 3 NOAA/Environmental System Laboratory, Boulder, Colorado
  • | 4 Atmospheric Sciences Research Center, State University of New York, Albany, New York
  • | 5 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
  • | 6 ** European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
Restricted access

Abstract

This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s−1. Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s−1.

Corresponding author address: Dr. James B. Edson, University of Connecticut, Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340. E-mail: james.edson@uconn.edu

Abstract

This study investigates the exchange of momentum between the atmosphere and ocean using data collected from four oceanic field experiments. Direct covariance estimates of momentum fluxes were collected in all four experiments and wind profiles were collected during three of them. The objective of the investigation is to improve parameterizations of the surface roughness and drag coefficient used to estimate the surface stress from bulk formulas. Specifically, the Coupled Ocean–Atmosphere Response Experiment (COARE) 3.0 bulk flux algorithm is refined to create COARE 3.5. Oversea measurements of dimensionless shear are used to investigate the stability function under stable and convective conditions. The behavior of surface roughness is then investigated over a wider range of wind speeds (up to 25 m s−1) and wave conditions than have been available from previous oversea field studies. The wind speed dependence of the Charnock coefficient α in the COARE algorithm is modified to , where m = 0.017 m−1 s and b = −0.005. When combined with a parameterization for smooth flow, this formulation gives better agreement with the stress estimates from all of the field programs at all winds speeds with significant improvement for wind speeds over 13 m s−1. Wave age– and wave slope–dependent parameterizations of the surface roughness are also investigated, but the COARE 3.5 wind speed–dependent formulation matches the observations well without any wave information. The available data provide a simple reason for why wind speed–, wave age–, and wave slope–dependent formulations give similar results—the inverse wave age varies nearly linearly with wind speed in long-fetch conditions for wind speeds up to 25 m s−1.

Corresponding author address: Dr. James B. Edson, University of Connecticut, Marine Sciences, 1080 Shennecossett Road, Groton, CT 06340. E-mail: james.edson@uconn.edu
Save