Reconstructing the Ocean's Interior from Surface Data

Jinbo Wang Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Jinbo Wang in
Current site
Google Scholar
PubMed
Close
,
Glenn R. Flierl Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Glenn R. Flierl in
Current site
Google Scholar
PubMed
Close
,
Joseph H. LaCasce Department of Geosciences, University of Oslo, Oslo, Norway

Search for other papers by Joseph H. LaCasce in
Current site
Google Scholar
PubMed
Close
,
Julie L. McClean Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Julie L. McClean in
Current site
Google Scholar
PubMed
Close
, and
Amala Mahadevan Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Amala Mahadevan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface quasigeostrophic (SQG) formalism, as proposed in several recent papers. The subsurface field is augmented by the addition of the barotropic and first baroclinic modes, whose amplitudes are determined by matching to the sea surface height (pressure), after subtracting the SQG contribution. An additional constraint is that the bottom pressure anomaly vanishes. The method is tested for three regions in the North Atlantic using data from a high-resolution numerical simulation. The decomposition yields strikingly realistic subsurface fields. It is particularly successful in energetic regions like the Gulf Stream extension and at high latitudes where the mixed layer is deep, but it also works in less energetic eastern subtropics. The demonstration highlights the possibility of reconstructing three-dimensional oceanic flows using a combination of satellite fields, for example, sea surface temperature (SST) and SSH, and sparse (or climatological) estimates of the regional depth-resolved density. The method could be further elaborated to integrate additional subsurface information, such as mooring measurements.

Corresponding author address: Jinbo Wang, Woods Hole Oceanographic Institution, MS #29, Woods Hole, MA 02543. E-mail: jinbow@alum.mit.edu

Abstract

A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface quasigeostrophic (SQG) formalism, as proposed in several recent papers. The subsurface field is augmented by the addition of the barotropic and first baroclinic modes, whose amplitudes are determined by matching to the sea surface height (pressure), after subtracting the SQG contribution. An additional constraint is that the bottom pressure anomaly vanishes. The method is tested for three regions in the North Atlantic using data from a high-resolution numerical simulation. The decomposition yields strikingly realistic subsurface fields. It is particularly successful in energetic regions like the Gulf Stream extension and at high latitudes where the mixed layer is deep, but it also works in less energetic eastern subtropics. The demonstration highlights the possibility of reconstructing three-dimensional oceanic flows using a combination of satellite fields, for example, sea surface temperature (SST) and SSH, and sparse (or climatological) estimates of the regional depth-resolved density. The method could be further elaborated to integrate additional subsurface information, such as mooring measurements.

Corresponding author address: Jinbo Wang, Woods Hole Oceanographic Institution, MS #29, Woods Hole, MA 02543. E-mail: jinbow@alum.mit.edu
Save
  • Blumen, W., 1978: Uniform potential vorticity flow. Part I: Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774–783.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325–334.

  • Charney, J. G., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 1087–1095.

  • Charney, J. G., and G. R. Flierl, 1981: Oceanic analogues of large-scale atmospheric motions. Evolution of Physical Oceanography, B. Warren and C. Wunsch, Eds., MIT Press, 504–548.

  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167–216, doi:10.1016/j.pocean.2011.01.002.

    • Search Google Scholar
    • Export Citation
  • Doney, S. C., S. Yeager, G. Danabasoglu, W. G. Large, and J. C. Mcwilliams, 2003: Modeling global oceanic inter-annual variability (1958-1997): Simulation design and model-data evaluation. NCAR Tech. Note NCAR/TN-452+STR, 48 pp.

  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 33–52.

  • Ferrari, R., and C. Wunsch, 2010: The distribution of eddy kinetic and potential energies in the global ocean. Tellus, 62A, 92–108.

    • Search Google Scholar
    • Export Citation
  • Fu, L. L., and G. R. Flierl, 1980: Nonlinear energy and enstrophy transfers in a realistically stratified ocean. Dyn. Atmos. Oceans, 4, 219–246.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 1975: The geostrophic momentum approximation and the semigeostrophic equations. J. Atmos. Sci., 32, 233–242.

  • Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877–946.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., B. Chapron, G. Lapeyre, and P. Klein, 2006: Potential use of microwave sea surface temperatures for the estimation of ocean currents. Geophys. Res. Lett., 33, L24608, doi:10.1029/2006GL027801.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., G. Lapeyre, P. Klein, B. Chapron, and M. W. Hecht, 2008: Three-dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res., 113, C09005, doi:10.1029/2007JC004692.

    • Search Google Scholar
    • Export Citation
  • Klein, P., J. Isern-Fontanet, G. Lapeyre, G. Roullet, E. Danioux, B. Chapron, S. Le Gentil, and H. Sasaki, 2009: Diagnosis of vertical velocities in the upper ocean from high-resolution sea surface height. Geophys. Res. Lett., 36, L12603, doi:10.1029/2009GL038359.

    • Search Google Scholar
    • Export Citation
  • Kundu, P., and J. S. Allen, 1975: Modal decomposition of the velocity field near the Oregon coast. J. Phys. Oceanogr., 5, 683–705.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2012: Surface quasigeostrophic solutions and baroclinic modes with exponential stratification. J. Phys. Oceanogr., 42, 569–580.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., and A. Mahadevan, 2006: Estimating subsurface horizontal and vertical velocities from sea-surface temperature. J. Mar. Res., 64, 695–721.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2009: What vertical mode does the altimeter reflect? On the decomposition in baroclinic modes and on a surface-trapped mode. J. Phys. Oceanogr., 39, 2857–2874.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165–176.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. Mcwilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363–403.

    • Search Google Scholar
    • Export Citation
  • McClean, J. L., P.-M. Poulain, J. W. Pelton, and M. E. Maltrud, 2002: Eulerian and lagrangian dtatistics from surface drifters and a high-resolution POP simulation in the north Atlantic. J. Phys. Oceanogr., 32, 2472–2491.

    • Search Google Scholar
    • Export Citation
  • Pascual, A., Y. Faugère, G. Larnicol, and P.-Y. Le Traon, 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett.,33, L02611, doi:10.1029/2005GL024633.

  • Pedlosky, J., 1987: Geophysical Fluid Dynamics. 2nd ed. Springer-Verlag, 710 pp.

  • Phillips, N. A., 1954: Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus, 6, 273–286.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 5473–5496.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 2–20.

  • Rudnick, D., and R. Ferrari, 1999: Compensation of horizontal temperature and salinity gradients in the ocean mixed layer. Science (New York, N.Y.), 283, 526–529.

    • Search Google Scholar
    • Export Citation
  • Scott, R. B., and D. G. Furnival, 2012: Assessment of traditional and new eigenfunction bases applied to extrapolation of surface geostrophic current time series to below the surface in an idealized primitive equation simulation. J. Phys. Oceanogr., 42, 165–178.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and G. K. Vallis, 2001: The scales and equilibration of midocean eddies: Freely evolving flow. J. Phys. Oceanogr., 31, 554–571.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., and J. Vanneste, 2013: A surface-aware projection basis for quasigeostrophic flow. J. Phys. Oceanogr., 43, 548–562.

    • Search Google Scholar
    • Export Citation
  • Smith, R. D., M. E. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at °. J. Phys. Oceanogr., 30, 1532–1561.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., 1993: Global oceanic precipitation from the MSU during 1979–91 and comparisons to other climatologies. J. Climate, 6, 1301–1326.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 1743–1769.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2006: A new theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 690–14 694.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and K. S. Smith, 2009: Quasigeostrophic turbulence with explicit surface dynamics: Application to the atmospheric energy spectrum. J. Atmos. Sci., 66, 450–467.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1997: The vertical partition of oceanic horizontal kinetic energy. J. Phys. Oceanogr., 27, 1770–1794.

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2371 1000 98
PDF Downloads 1648 504 54