A Global Model for the Diapycnal Diffusivity Induced by Internal Gravity Waves

Dirk Olbers Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

Search for other papers by Dirk Olbers in
Current site
Google Scholar
PubMed
Close
and
Carsten Eden Institut für Meereskunde, KlimaCampus, Universität Hamburg, Hamburg, Germany

Search for other papers by Carsten Eden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energy density variables in physical space. A further simplification results in a single partial differential equation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX, the wave energy is forced by wind-driven near-inertial motions and baroclinic tides, radiating waves from the respective boundary layers at the surface and the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and diapycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.

Corresponding author address: Carsten Eden, KlimaCampus, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: carsten.eden@zmaw.de

Abstract

An energetically consistent model for the diapycnal diffusivity induced by breaking of internal gravity waves is proposed and tested in local and global settings. The model [Internal Wave Dissipation, Energy and Mixing (IDEMIX)] is based on the spectral radiation balance of the wave field, reduced by integration over the wavenumber space, which yields a set of balances for energy density variables in physical space. A further simplification results in a single partial differential equation for the total energy density of the wave field. The flux of energy to high vertical wavenumbers is parameterized by a functional derived from the wave–wave scattering integral of resonant wave triad interactions, which also forms the basis for estimates of dissipation rates and related diffusivities of ADCP and hydrography fine-structure data. In the current version of IDEMIX, the wave energy is forced by wind-driven near-inertial motions and baroclinic tides, radiating waves from the respective boundary layers at the surface and the bottom into the ocean interior. The model predicts plausible magnitudes and three-dimensional structures of internal wave energy, dissipation rates, and diapycnal diffusivities in rough agreement to observational estimates. IDEMIX is ready for use as a mixing module in ocean circulation models and can be extended with more spectral components.

Corresponding author address: Carsten Eden, KlimaCampus, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: carsten.eden@zmaw.de
Save
  • Alford, M., 2001: Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr., 31, 23592368.

    • Search Google Scholar
    • Export Citation
  • Arbic, B., S. Garner, R. Hallberg, and H. Simmons, 2004: The accuracy of surface elevations in forward global barotropic and baroclinic tide models. Deep-Sea Res., 51, 30693101.

    • Search Google Scholar
    • Export Citation
  • Baines, P., 1982: On internal tide generation models. Deep-Sea Res., 29, 307338.

  • Bell, T. H., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327.

  • Bryan, K., and L. Lewis, 1979: A water mass model of the world ocean. J. Geophys. Res., 84 (C5), 25032517.

  • Burchard, H., and H. Baumert, 1995: On the performance of a mixed-layer model based on the k-ϵ turbulence closure. J. Geophys. Res., 100 (C5), 85238540.

    • Search Google Scholar
    • Export Citation
  • Cairns, J. L., and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81, 19431950.

  • Cummins, P., G. Holloway, and A. Gargett, 1990: Sensitivity of GFDL ocean general circulation model to a parameterization of vertical diffusion. J. Phys. Oceanogr., 20, 817830.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Diapycnal mixing by mesoscale eddies. Ocean Modell., 23, 113120.

  • Eriksen, C. C., 1982: Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87 (C1), 525538.

  • Fu, L.-L., 1981: Observations and models of inertial waves in the deep ocean. Rev. Geophys. Space Phys., 19, 141170.

  • Garrett, C., 2001: What is the near-inertial wave band and why is it different from the rest of the internal wave spectrum? J. Phys. Oceanogr., 31, 962971.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and W. Munk, 1972: Space–time scales of internal waves. Geophys. Astrophys. Fluid Dyn., 3, 225264.

  • Gaspar, P., Y. Gregoris, and J.-M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station PAPA and Long-Term Upper Ocean Study site. J. Geophys. Res., 95 (C9), 16 17916 193.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. Koltermann, 2004: WOCE global hydrographic climatology. Ber. BSH, 35, 152.

  • Gregg, M., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 (C7), 96869698.

  • Gregg, M., T. Sanford, and D. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422, 513515.

    • Search Google Scholar
    • Export Citation
  • Henyey, F., J. Wright, and S. Flatté, 1986: Energy and action flow through the internal wave field: An Eikonal approach. J. Geophys. Res., 91 (C7), 84878495.

    • Search Google Scholar
    • Export Citation
  • Jayne, S., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775.

    • Search Google Scholar
    • Export Citation
  • Jayne, S., and L. St. Laurent, 2001: Parameterizing tidal dissipation over rough topography. Geophys. Res. Lett., 28, 811814.

  • Jochum, M., B. Briegleb, G. Danabasoglu, W. Large, N. J. Norton, S. Jayne, M. Alford, and F. Bryan, 2012: The impact of oceanic near-inertial waves on climate. J. Climate,26, 2833–2844.

  • Käse, R., 1979: Calculations of the energy transfer by the wind to near-inertial waves. Deep-Sea Res., 26, 227232.

  • Kunze, E., E. Firing, J. M. Hummon, T. K. Chereskin, and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and G. Crawford, 1995: Observations and simulations of upper-ocean response to wind events during the ocean storms experiment. J. Phys. Oceanogr., 25, 28312852.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Llewellyn Smith, S., and W. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566.

  • Lvov, Y., and E. Tabak, 2001: Hamiltonian formalism and the Garrett–Munk spectrum of internal waves in the ocean. Phys. Rev. Lett., 87, 168501, doi:10.1103/PhysRevLett.87.168501.

    • Search Google Scholar
    • Export Citation
  • Maas, L., 2011: Topographies lacking tidal conversion. J. Fluid Mech., 1, 120.

  • MacKinnon, J. A., and K. B. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9 degree latitude. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • McComas, C. H., 1977: Equilibrium mechanisms within the oceanic internal wave field. J. Phys. Oceanogr., 7, 836845.

  • McComas, C. H., and F. P. Bretherton, 1977: Resonant interaction of oceanic internal waves. J. Geophys. Res., 82, 13971412.

  • McComas, C. H., and P. Müller, 1981: Time scales of resonant interactions among oceanic internal waves. J. Phys. Oceanogr., 11, 139147.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517.

  • Müller, P., and M. Briscoe, 1999: Diapycnal mixing and internal waves. Dynamics of Oceanic Internal Gravity Waves: Proc. 11th Aha Huliko'a Hawaiian Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 289–294.

  • Müller, P., and A. Natarov, 2003: The internal wave action model (IWAM). Near Boundary Processes and Their Parameterization: Proc. 13th Aha Huliko'a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai‘i at Mānoa, 95–105.

  • Müller, P., D. J. Olbers, and J. Willebrand, 1978: The IWEX spectrum. J. Geophys. Res., 83, 479500.

  • Müller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536.

    • Search Google Scholar
    • Export Citation
  • Munk, W. H., 1966: Abyssal recipes. Deep-Sea Res., 13, 707730.

  • Munk, W. H., 1981: Internal waves and small-scale processes. Evolution of Physical Oceanography, B. A. Warren and C. Wunsch, Eds., MIT Press, 264–291.

  • Nikurashin, M., and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., G. Vallis, and A. Adcroft, 2013: Routes to energy dissipation for geostrophic flows in the Southern Ocean. Nat. Geosci., 6, 48–51.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028 , doi:10.1029/2004JC002487.

  • Olbers, D. J., 1974: On the energy balance of small-scale internal waves in the deep sea. Hamb. Geophys. Einzelschriften,24, 91.

  • Olbers, D. J., 1976: Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech., 74, 375399.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1983: Models of the oceanic internal wave field. Rev. Geophys. Space Phys., 21, 15671606.

  • Olbers, D. J., and K. Herterich, 1979: The spectral energy transfer from surface waves to internal waves. J. Fluid Mech., 92, 349379.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., J. Willebrand, and C. Eden, 2012: Ocean Dynamics. Springer Verlag, 704 pp.

  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389.

  • Osborn, T. R., and C. S. Cox, 1972: Oceanic fine structure. Geophys. Astrophys. Fluid Dyn., 3, 321345.

  • Plueddemann, A., and J. Farrar, 2006: Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep-Sea Res., 53 (1–2), 530.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2004a: A heuristic description of internal wave dynamics. J. Phys. Oceanogr., 34, 214230.

  • Polzin, K. L., 2004b: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309.

  • Polzin, K. L., and Y. V. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328.

    • Search Google Scholar
    • Export Citation
  • Pomphrey, N., J. D. Meiss, and K. M. Watson, 1980: Description of nonlinear internal wave interactions using langevin methods. J. Geophys. Res., 85 (C2), 10851094.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., S. Jayne, L. St. Laurent, and A. Weaver, 2004: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263.

    • Search Google Scholar
    • Export Citation
  • Staquet, C., 2004: Gravity and inertia-gravity internal waves: Breaking processes and induced mixing. Surv. Geophys., 25, 281314.

  • Staquet, C., and J. Sommeria, 2002: Internal gravity waves: From instabilities to turbulence. Annu. Rev. Fluid Mech., 34, 559593.

  • St. Laurent, L., H. Simmons, and S. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Sun, H., and E. Kunze, 1999: Internal wave–wave interactions. Part II: Spectral energy transfer and turbulence production. J. Phys. Oceanogr., 29, 29052919.

    • Search Google Scholar
    • Export Citation
  • Tandon, A., and C. Garrett, 1996: On a recent parameterization of mesoscale eddies. J. Phys. Oceanogr., 26, 406416.

  • Walter, M., C. Mertens, and M. Rhein, 2005: Mixing estimates from a large-scale hydrographic survey in the North Atlantic. Geophys. Res. Lett., 32, L13605, 10.1029/2005GL022471.

    • Search Google Scholar
    • Export Citation
  • Watanabe, M., and T. Hibiya, 2002: Global estimates of the wind-induced energy flux to inertial motions in the surface mixed layer. Geophys. Res. Lett., 29, 1239, doi:10.1029/2001GL014422.

    • Search Google Scholar
    • Export Citation
  • Watson, K., B. West, and B. Cohen, 1976: Coupling of surface and internal gravity waves: A mode coupling model. J. Fluid Mech., 77, 185208.

    • Search Google Scholar
    • Export Citation
  • Whalen, C., L. Talley, and J. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Z. Jing, S. Riser, and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2239 1335 60
PDF Downloads 713 192 18