• Abernathey, R., J. Marshall, M. Mazloff, and E. Shuckburgh, 2010: Enhancement of mesoscale eddy stirring at steering levels in the Southern Ocean. J. Phys. Oceanogr., 40, 170184.

    • Search Google Scholar
    • Export Citation
  • Bishop, S. P., 2012: The role of eddy fluxes in the Kuroshio Extension at 144°–148°E. Ph.D. thesis, University of Rhode Island, 128 pp.

  • Bishop, S. P., D. R. Watts, J.-H. Park, and N. G. Hogg, 2012: Evidence of bottom-trapped currents in the Kuroshio Extension region. J. Phys. Oceanogr., 42, 321328.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and N. G. Hogg, 1996: Structure of the Gulf Stream and its recirculations at 55°W. J. Phys. Oceanogr., 26, 10021022.

  • Bretherton, F. P., E. Davis, and C. B. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments applied to MODE-73. Deep-Sea Res., 23, 559582.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., 1979: Poleward heat flux and conversion of available potential energy in Drake Passage. J. Mar. Res., 37, 122.

  • Charney, J. G., and M. E. Stern, 1962: On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci., 19, 159172.

    • Search Google Scholar
    • Export Citation
  • Chinn, B. S., and S. T. Gille, 2007: Estimating eddy heat flux from float data in the North Atlantic: The impact of temporal sampling interval. J. Phys. Oceanogr., 24, 923934.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part II: Eddy forcing on the time-mean flow. J. Phys. Oceanogr., 26, 21322151.

    • Search Google Scholar
    • Export Citation
  • Cronin, M., and D. R. Watts, 1996: Eddy–mean flow interaction in the Gulf Stream at 68°W. Part I: Eddy energetics. J. Phys. Oceanogr., 26, 21072131.

    • Search Google Scholar
    • Export Citation
  • Dewar, W. K., and J. M. Bane, 1989: Gulf Stream dynamics. Part I: Mean flow dynamics at 73°w. J. Phys. Oceanogr., 19, 15581573.

  • Donohue, K. A., D. R. Watts, K. L. Tracey, A. D. Greene, and M. Kennelly, 2010: Mapping circulation in the Kuroshio Extension with an array of current and pressure recording inverted echo sounders. J. Atmos. Oceanic Technol., 27, 507527.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., and P. Y. Le-Traon, 2001: A comparison of surface eddy kinetic energy and Reynolds stresses in the Gulf Stream and the Kuroshio Current systems from merged TOPEX/Poseidon and ERS-1/2 altimetric data. J. Geophys. Res., 106 (C8), 16 60316 622.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2001: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 654 pp.

  • Ferrari, R., and M. Nikurashin, 2010: Suppression of eddy diffusivity across jets in the Southern Ocean. J. Phys. Oceanogr., 40, 15011519.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: On the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulating models. J. Phys. Oceanogr., 20, 150155.

  • Greene, A. D., 2010: Deep variability in the Kuroshio Extension. Ph.D. thesis, University of Rhode Island, 150 pp.

  • Hall, M. M., 1986: Assessing the energetics and dynamics of the Gulf Stream at 68°W from moored current measurements. J. Mar. Res., 44, 423433.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., 1991: Energetics of the Kuroshio Extension at 35°N, 152°E. J. Phys. Oceanogr., 21, 958975.

  • Hogg, N. G., 1986: On the correction of temperature and velocity time series for mooring motion. J. Atmos. Oceanic Technol., 3, 204214.

    • Search Google Scholar
    • Export Citation
  • Hogg, N. G., and D. E. Frye, 2007: Performance of a new generation of acoustic current meters. J. Phys. Oceanogr., 37, 148161.

  • Howe, P. J., K. A. Donohue, and D. R. Watts, 2009: Stream-coordinate structure and variability of the Kuroshio Extension. Deep-Sea Res., 56, 10931116.

    • Search Google Scholar
    • Export Citation
  • Illari, L., and J. C. Marshall, 1983: On the interpretation of eddy fluxes during a blocking episode. J. Atmos. Sci., 40, 22322242.

  • Jayne, S. R., and J. Marotzke, 2002: The oceanic eddy heat transport. J. Phys. Oceanogr., 32, 33283345.

  • Jayne, S. R., and Coauthors, 2009: The Kuroshio Extension and its recirculation gyres. Deep-Sea Res. I, 56, 20882099.

  • Killworth, P. D., 1992: An equivalent-barotropic mode in the fine resolution Antarctic model. J. Phys. Oceanogr., 22, 13791387.

  • Klocker, A., R. Ferrari, and J. H. LaCasce, 2012: Estimating suppression of eddy mixing by mean flows. J. Phys. Oceanogr., 46, 1566–1576.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and G. Shutts, 1981: A note on rotational and divergent eddy fluxes. J. Phys. Oceanogr., 11, 16771679.

  • Meinen, C. S., 2008: Accuracy in mooring motion temperature corrections. J. Atmos. Oceanic Technol., 25, 22932303.

  • Meinen, C. S., and D. R. Watts, 1998: Calibrating inverted Echo sounders equipped with pressure sensors. J. Atmos. Oceanic Technol., 15, 13391345.

    • Search Google Scholar
    • Export Citation
  • Mizuno, K., and W. B. White, 1983: Annual and interannual variability in the Kuroshio Current system. J. Phys. Oceanogr., 13, 18471867.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., D. R. Watts, K. A. Donohue, and K. L. Tracey, 2012: Comparisons of sea surface height variability observed by pressure-recording inverted echo sounders and satellite altimetry in the Kuroshio Extension. J. Oceanogr., 68, 401416.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1964: The stability of currents in the atmosphere and ocean: Part I. J. Atmos. Sci., 21, 201219.

  • Phillips, H. E., and S. R. Rintoul, 2000: Eddy variabillity and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr., 30, 30503076.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005a: Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. J. Phys. Oceanogr., 35, 458473.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2005b: Variability of the Kuroshio Extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J. Phys. Oceanogr., 35, 20902103.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., 1987: On the energetics of the Gulf Stream at 73°W. J. Mar. Res., 45, 5982.

  • Shutts, G. J., 1986: A case study of eddy forcing during an atlantic blocking episode. Anomalous Atmospheric Flows and Blocking, B. Saltzman, B. Saltzman, and A. C. Wiin-Nielsen, Eds., Advances in Geophysics, Vol. 29, Adademic Press, 135–162.

  • Smith, K. S., and J. Marshall, 2009: Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr., 39, 5069.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962.

    • Search Google Scholar
    • Export Citation
  • Tracey, K. L., D. R. Watts, K. A. Donohue, and H. Ichikawa, 2012: Propagation of Kuroshio Extension meanders between 143°E and 149°E. J. Phys. Oceanogr., 42, 581–601.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. M. Caron, 2001: Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14, 34333443.

  • Tulloch, R., J. Marshall, C. Hill, and K. S. Smith, 2011: Scales, growth rates and spetral fluxes of baroclinic instability in the ocean. J. Phys. Oceanogr., 41, 10571076.

    • Search Google Scholar
    • Export Citation
  • Volkov, D. L., T. Lee, and L.-L. Fu, 2008: Eddy-induced meridional heat transport in the ocean. Geophys. Res. Lett., 35, L06602, doi:10.1029/2008GL035490.

    • Search Google Scholar
    • Export Citation
  • Walkden, G. J., K. J. Heywood, and D. P. Stevens, 2008: Eddy heat fluxes from direct measurements of the Antarctic Polar Front in Shag Rocks passage. Geophys. Res. Lett., 35, L06602, doi:10.1029/2007GL032767.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., and S. R. Jayne, 2011: Eddy–mean flow interactions in the along-stream development of a western boundary current jet: An idealized model study. J. Phys. Oceanogr., 41, 682707.

    • Search Google Scholar
    • Export Citation
  • Waterman, S. N., S. R. Jayne, and N. G. Hogg, 2011: Eddy–mean flow interactions in the Kuroshio Extension region. J. Phys. Oceanogr., 41, 11821208.

    • Search Google Scholar
    • Export Citation
  • Watts, D. R., X. Qian, and K. L. Tracey, 2001a: Mapping abyssal current and pressure fields under the meandering Gulf Stream. J. Atmos. Oceanic Technol., 18, 10521067.

    • Search Google Scholar
    • Export Citation
  • Watts, D. R., C. Sun, and S. Rintoul, 2001b: A two-dimensional gravest empirical mode determined from hydrographic observations in the Subantartic Front. J. Phys. Oceanogr., 31, 21862209.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1999: Where do ocean eddy heat fluxes matter? J. Geophys. Res., 104 (C6), 13 23513 249.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 10 10 10
PDF Downloads 3 3 3

Divergent Eddy Heat Fluxes in the Kuroshio Extension at 144°–148°E. Part I: Mean Structure

View More View Less
  • 1 National Center for Atmospheric Research, Boulder, Colorado
  • | 2 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
Restricted access

Abstract

The Kuroshio Extension System Study (KESS) provided 16 months of observations to quantify eddy heat flux (EHF) from a mesoscale-resolving array of current- and pressure-equipped inverted echo sounders (CPIES). The mapped EHF estimates agreed well with point in situ measurements from subsurface current meter moorings. Geostrophic currents determined with the CPIES separate the vertical structure into an equivalent-barotropic internal mode and a nearly depth-independent external mode measured in the deep ocean. As a useful by-product of this decomposition, the divergent EHF (DEHF) arises entirely from the correlation between the external mode and the upper-ocean thermal front. EHFs associated with the internal mode are completely rotational. DEHFs were mostly downgradient and strongest just upstream of a mean trough at ~147°E. The downgradient DEHFs resulted in a mean-to-eddy potential energy conversion rate that peaked midthermocline with a magnitude of 10 × 10−3 cm2 s−3 and a depth-averaged value of 3 × 10−3 cm2 s−3. DEHFs were vertically coherent, with subsurface maxima exceeding 400 kW m−2 near 400-m depth. The subsurface maximum DEHFs occurred near the depth where the quasigeostrophic potential vorticity lateral gradient changes sign from one layer to the next below it. The steering level is deeper than this depth of maximum DEHFs. A downgradient parameterization could be fitted to the DEHF vertical structure with a constant eddy diffusivity κ that had values of 800–1400 m2 s−1 along the mean path. The resulting divergent meridional eddy heat transport across the KESS array was 0.05 PW near 35.25°N, which may account for ~⅓ of the total Pacific meridional heat transport at this latitude.

Corresponding author address: Stuart P. Bishop, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: sbishop@ucar.edu

Abstract

The Kuroshio Extension System Study (KESS) provided 16 months of observations to quantify eddy heat flux (EHF) from a mesoscale-resolving array of current- and pressure-equipped inverted echo sounders (CPIES). The mapped EHF estimates agreed well with point in situ measurements from subsurface current meter moorings. Geostrophic currents determined with the CPIES separate the vertical structure into an equivalent-barotropic internal mode and a nearly depth-independent external mode measured in the deep ocean. As a useful by-product of this decomposition, the divergent EHF (DEHF) arises entirely from the correlation between the external mode and the upper-ocean thermal front. EHFs associated with the internal mode are completely rotational. DEHFs were mostly downgradient and strongest just upstream of a mean trough at ~147°E. The downgradient DEHFs resulted in a mean-to-eddy potential energy conversion rate that peaked midthermocline with a magnitude of 10 × 10−3 cm2 s−3 and a depth-averaged value of 3 × 10−3 cm2 s−3. DEHFs were vertically coherent, with subsurface maxima exceeding 400 kW m−2 near 400-m depth. The subsurface maximum DEHFs occurred near the depth where the quasigeostrophic potential vorticity lateral gradient changes sign from one layer to the next below it. The steering level is deeper than this depth of maximum DEHFs. A downgradient parameterization could be fitted to the DEHF vertical structure with a constant eddy diffusivity κ that had values of 800–1400 m2 s−1 along the mean path. The resulting divergent meridional eddy heat transport across the KESS array was 0.05 PW near 35.25°N, which may account for ~⅓ of the total Pacific meridional heat transport at this latitude.

Corresponding author address: Stuart P. Bishop, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. E-mail: sbishop@ucar.edu
Save