An Analysis of Loop Current Frontal Eddies in a ⅙° Atlantic Ocean Model Simulation

Haosheng Huang Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, Louisiana

Search for other papers by Haosheng Huang in
Current site
Google Scholar
PubMed
Close
,
Nan D. Walker Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, Louisiana

Search for other papers by Nan D. Walker in
Current site
Google Scholar
PubMed
Close
,
Ya Hsueh Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida

Search for other papers by Ya Hsueh in
Current site
Google Scholar
PubMed
Close
,
Yi Chao Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Yi Chao in
Current site
Google Scholar
PubMed
Close
, and
Robert R. Leben Colorado Center for Astrodynamics Research, University of Colorado Boulder, Boulder, Colorado

Search for other papers by Robert R. Leben in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Loop Current frontal eddies (LCFEs) refer to cyclonic cold eddies moving downstream along the outside edge of the Loop Current in the eastern Gulf of Mexico. They have been observed by in situ measurements and satellite imagery, mostly downstream of the Campeche Bank continental shelf. Their evolution, simulated by a primitive equation ⅙° and 37-level Atlantic Ocean general circulation numerical model, is described in detail in this study. Some of the simulated LCFEs arise, with the passage through the Yucatan Channel of a Caribbean anticyclonic eddy, as weak cyclones with diameters less than 100 km near the Yucatan Channel. They then grow to fully developed eddies with diameters on the order of 150–200 km while moving along the Loop Current edge. Modeled LCFEs have a very coherent vertical structure with isotherm doming seen from 50- to ~1000-m depth. The Caribbean anticyclone and LCFE are two predominant features in this numerical model simulation, which account for 22% and 10%, respectively, of the short-term (period less than 100 days) temperature variance at 104.5 m in the complex empirical orthogonal function (CEOF) analysis. The source water inside the LCFEs that are generated by Caribbean anticyclonic eddy impingement can be traced back, using a backward-in-time Lagrangian particle-tracking method, to the western edge of the Caribbean Current in the northwest Caribbean Sea and to coastal waters near the northern Yucatan Peninsula. The model results indicating a pairing of anticyclonic and cyclonic eddies within and north of the Yucatan Channel are supported by satellite altimetry measurements during February 2002 when several altimeters were operational.

Current affiliation: Remote Sensing Solutions, Pasadena, California.

Corresponding author address: Haosheng Huang, 320 Howe-Russell Geoscience Complex, Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803. E-mail: hhuang7@lsu.edu

Abstract

The Loop Current frontal eddies (LCFEs) refer to cyclonic cold eddies moving downstream along the outside edge of the Loop Current in the eastern Gulf of Mexico. They have been observed by in situ measurements and satellite imagery, mostly downstream of the Campeche Bank continental shelf. Their evolution, simulated by a primitive equation ⅙° and 37-level Atlantic Ocean general circulation numerical model, is described in detail in this study. Some of the simulated LCFEs arise, with the passage through the Yucatan Channel of a Caribbean anticyclonic eddy, as weak cyclones with diameters less than 100 km near the Yucatan Channel. They then grow to fully developed eddies with diameters on the order of 150–200 km while moving along the Loop Current edge. Modeled LCFEs have a very coherent vertical structure with isotherm doming seen from 50- to ~1000-m depth. The Caribbean anticyclone and LCFE are two predominant features in this numerical model simulation, which account for 22% and 10%, respectively, of the short-term (period less than 100 days) temperature variance at 104.5 m in the complex empirical orthogonal function (CEOF) analysis. The source water inside the LCFEs that are generated by Caribbean anticyclonic eddy impingement can be traced back, using a backward-in-time Lagrangian particle-tracking method, to the western edge of the Caribbean Current in the northwest Caribbean Sea and to coastal waters near the northern Yucatan Peninsula. The model results indicating a pairing of anticyclonic and cyclonic eddies within and north of the Yucatan Channel are supported by satellite altimetry measurements during February 2002 when several altimeters were operational.

Current affiliation: Remote Sensing Solutions, Pasadena, California.

Corresponding author address: Haosheng Huang, 320 Howe-Russell Geoscience Complex, Department of Oceanography and Coastal Sciences, School of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803. E-mail: hhuang7@lsu.edu
Save
  • Abascal, A. J., J. Sheinbaum, J. Candela, J. Ochoa, and A. Badan, 2003: Analysis of flow variability in the Yucatan Channel. J. Geophys. Res., 108, 3381, doi:10.1029/2003JC001922.

    • Search Google Scholar
    • Export Citation
  • Athie, G., J. Candela, J. Ochoa, and J. Sheinbaum, 2012: Impact of Caribbean cyclones on the detachment of Loop Current anticyclones. J. Geophys. Res., 117, C03018, doi:10.1029/2011JC007090.

    • Search Google Scholar
    • Export Citation
  • Auer, S. J., 1987: Five-year climatological survey of the Gulf Stream system and its associated rings. J. Geophys. Res., 92 (C11), 11 70911 726.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., 1983: Interaction of the monsoon and Pacific trade wind system at interannual time scale: Part I. Mon. Wea. Rev., 111, 756773.

    • Search Google Scholar
    • Export Citation
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model from a three-year climatology of ECMWF analysis. J. Mar. Syst., 6, 363380.

    • Search Google Scholar
    • Export Citation
  • Batchelder, H., 2006: Forward-in-time-/backward-in-time-trajectory (FITT/BITT) modeling of particles and organisms in the coastal ocean. J. Atmos. Oceanic Technol., 23, 727741.

    • Search Google Scholar
    • Export Citation
  • Candela, J., J. Sheinbaum, J. Ochoa, A. Badan, and R. Leben, 2002: The potential vorticity flux through the Yucatan Channel and the Loop Current in the Gulf of Mexico. Geophys. Res. Lett., 29, 2059, doi:10.1029/2002GL015587.

    • Search Google Scholar
    • Export Citation
  • Candela, J., S. Tanahara, M. Crepon, B. Barnier, and J. Sheinbaum, 2003: Yucatan Channel flow: Observations versus CLIPPER ATL6 and MERCATOR PAM models. J. Geophys. Res., 108, 3385, doi:10.1029/2003JC001961.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and Y. Chao, 1999: Caribbean Sea eddies inferred from TOPEX/Poseidon altimetry and a ⅙° Atlantic Ocean model simulation. J. Geophys. Res., 104 (C4), 77437752.

    • Search Google Scholar
    • Export Citation
  • Chao, Y., and M. S. Lozier, 2001: Evaluation of North Atlantic property field simulations at ⅙°. J. Phys. Oceanogr., 31, 32003213.

    • Search Google Scholar
    • Export Citation
  • Chao, Y., A. Gangopadhyay, F. Bryan, and W. R. Holland, 1996: Modeling the Gulf Stream system: How far from reality? Geophys. Res. Lett., 23, 31553158.

    • Search Google Scholar
    • Export Citation
  • Chérubin, L. M., Y. Morel, and E. P. Chassignet, 2006: Loop Current ring shedding: The formation of cyclones and the effect of topography. J. Phys. Oceanogr., 36, 569591.

    • Search Google Scholar
    • Export Citation
  • Cochrane, J. D., 1972: Separation of an anticyclone and subsequent developments in the Loop Current. Contributions on the Physical Oceanography of the Gulf of Mexico, L. R. A. Capuro and J. L. Reid, Eds., Gulf Publishing, 91–106.

    • Search Google Scholar
    • Export Citation
  • Ducet, N., P. Y. LeTraon, and G. Reverdin, 2000: Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J. Geophys. Res., 105, 477498.

    • Search Google Scholar
    • Export Citation
  • Dukowicz, J. K., and R. D. Smith, 1994: Implicit free-surface method for the Bryan–Cox–Semtner ocean model. J. Geophys. Res., 99 (C4), 79918014.

    • Search Google Scholar
    • Export Citation
  • Elliott, B. A., 1982: Anticyclonic rings in the Gulf of Mexico. J. Phys. Oceanogr., 12, 12921309.

  • Fratantoni, P. S., T. N. Lee, G. P. Podesta, and F. Muller-Karger, 1998: The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J. Geophys. Res., 103 (C11), 24 75924 779.

    • Search Google Scholar
    • Export Citation
  • Hofmann, E. E., K. S. Hedstrom, J. R. Moisan, D. B. Haidvogel, and D. L. Mackas, 1991: Use of simulated drifter tracks to investigate general transport patterns and residence times in the coastal transition zone. J. Geophys. Res., 96 (C8), 15 04115 052.

    • Search Google Scholar
    • Export Citation
  • Horel, J. D., 1984: Complex principal component analysis: Theory and examples. J. Climate Appl. Meteor., 23, 16601673.

  • Hurlburt, H. E., 1986: Dynamic transfer of simulated altimeter data into subsurface information by a numerical ocean model. J. Geophys. Res., 91 (C2), 23722400.

    • Search Google Scholar
    • Export Citation
  • Hurlburt, H. E., and J. D. Thompson, 1982: The dynamics of Loop Current and shed eddies in a numerical model of the Gulf of Mexico. Hydrodynamics of Semi-Enclosed Seas, J. C. J. Nihoul, Ed., Elsevier Scientific, 243–297.

    • Search Google Scholar
    • Export Citation
  • Leben, R., G. Born, and B. Engebrecht, 2002: Operational altimeter data processing for mesoscale monitoring. Mar. Geod., 25, 318.

  • Leipper, D. F., 1970: A sequence of current patterns in the Gulf of Mexico. J. Geophys. Res., 75, 637657.

  • LeTraon, P. Y., Y. Faugère, F. Hernandez, F. M. J. Dorandeu, and M. Ablain, 2003: Can we merge Geosat follow-on with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation? J. Atmos. Oceanic Technol., 20, 889895.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and T. P. Boyer, 1994: Temperature. Vol. 4, World Ocean Atlas 1994, NOAA Atlas NESDIS 4, 117 pp.

  • Levitus, S., R. Burgett, and T. P. Boyer, 1994: Salinity. Vol. 3, World Ocean Atlas 1994, NOAA Atlas NESDIS 3, 99 pp.

  • Lugo-Fernandez, A., 2007: Is the Loop Current a chaotic oscillator? J. Phys. Oceanogr., 37, 14551469.

  • Matsuura, T., and T. Yamagata, 1982: On the evolution of nonlinear planetary eddies larger than the radius of deformation. J. Phys. Oceanogr., 12, 440456.

    • Search Google Scholar
    • Export Citation
  • Maul, G. A., 1977: The annual cycle of the Gulf Loop Current. Part I: Observations during a one-year time series. J. Mar. Res., 35, 2947.

    • Search Google Scholar
    • Export Citation
  • Maul, G. A., and F. M. Vukovich, 1993: The relationship between variations in the Gulf of Mexico Loop Current and Straits of Florida volume transport. J. Phys. Oceanogr., 23, 785796.

    • Search Google Scholar
    • Export Citation
  • Merino, M., 1997: Upwelling on the Yucatan Shelf: Hydrographic evidence. J. Mar. Syst., 13, 101121.

  • Molinari, R. L., J. F. Festa, and D. W. Behringer, 1978: The circulation in the Gulf of Mexico derived from estimated dynamic height fields. J. Phys. Oceanogr., 8, 987996.

    • Search Google Scholar
    • Export Citation
  • Murphy, S. J., H. E. Hurlbert, and J. J. O'Brien, 1999: The connectivity of eddy variability in the Caribbean Sea, the Gulf of Mexico, and the Atlantic Ocean. J. Geophys. Res., 104 (C1), 14311453.

    • Search Google Scholar
    • Export Citation
  • Nakamura, M., and Y. Chao, 2001: Diagnoses of an eddy-resolving Atlantic Ocean model simulation in the vicinity of the Gulf Stream. Part I: Potential vorticity. J. Phys. Oceanogr., 31, 353378.

    • Search Google Scholar
    • Export Citation
  • Ochoa, J., J. Sheinbaum, A. Baden, J. Candela, and D. Wilson, 2001: Geostrophy via potential vorticity inversion in the Yucatan Channel. J. Mar. Res., 59, 725747.

    • Search Google Scholar
    • Export Citation
  • Oey, L.-Y., H.-C. Lee, and W. J. Schmitz Jr., 2003: Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: A numerical model study. J. Geophys. Res., 108, 3324, doi:10.1029/2002JC001698.

    • Search Google Scholar
    • Export Citation
  • Paluszkiewicz, T., L. P. Atkinson, E. S. Posmentier, and C. R. McClain, 1983: Observations of a Loop Current frontal eddy intrusion onto the West Florida Shelf. J. Geophys. Res., 88, 96399652.

    • Search Google Scholar
    • Export Citation
  • Pichevin, T., and D. Nof, 1997: The momentum imbalance paradox. Tellus, 49, 298319.

  • Pullin, D. I., 1978: The large-scale structure of unsteady self-similar rolled-up vortex sheets. J. Fluid Mech., 88, 401430.

  • Pullin, D. I., and A. E. Perry, 1980: Some flow visualization experiments on the starting vortex. J. Fluid Mech., 97, 239255.

  • Rio, M. H., S. Guinehut, and G. Larnicol, 2011: New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J. Geophys. Res., 116, C07018, doi:10.1029/2010JC006505.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, L. K., 1985: Introduction to the CODE-2 moored array and large-scale data report. CODE-2 Moored Array and Large-Scale Data Rep., R. Limeburner, Ed., CODE Tech. Rep. 38, WHOI Tech. Rep. 85–35, 21 pp.

  • Rott, N., 1956: Diffraction of a weak shock with vortex generation. J. Fluid Mech., 1, 111128.

  • Schmitz, W. J., Jr., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31, 2949.

  • Sheinbaum, J., J. Candela, A. Baden, and J. Ochoa, 2002: Flow structure and transports in the Yucatan Channel. Geophys. Res. Lett., 29, 1040, doi:10.1029/2001GL013990.

    • Search Google Scholar
    • Export Citation
  • Signell, R. P., and W. R. Geyer, 1991: Transient eddy formation around headlands. J. Geophys. Res., 96 (C2), 25612575.

  • Stern, M. E., and G. R. Flierl, 1987: On the interaction of a vortex with a shear flow. J. Geophys. Res., 92 (C10), 10 73310 744.

  • Sturges, W., 1992: An estimate of the spectrum of Loop Current variability from gappy data. J. Phys. Oceanogr., 22, 12451256.

  • Sturges, W., and J. C. Evans, 1983: On the variability of the Loop Current in the Gulf of Mexico. J. Mar. Res., 41, 639653.

  • Sturges, W., and R. Leben, 2000: Frequency of ring separation from the Loop Current in the Gulf of Mexico: A revised estimate. J. Phys. Oceanogr., 30, 18141819.

    • Search Google Scholar
    • Export Citation
  • Sturges, W., N. G. Hoffmann, and R. R. Leben, 2010: A trigger mechanism for Loop Current ring separations. J. Phys. Oceanogr., 40, 900913.

    • Search Google Scholar
    • Export Citation
  • van Senden, D. C., and J. Imberger, 1990: Effects of initial conditions and Ekman suction on tidal outflows from inlets. J. Geophys. Res., 95 (C8), 13 37313 391.

    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., 1988: On the formation of elongated cold perturbation off the Dry Tortugas. J. Phys. Oceanogr., 18, 10511059.

  • Vukovich, F. M., 1995: An updated evaluation of the Loop Current eddy-shedding frequency. J. Geophys. Res., 100 (C5), 86558659.

  • Vukovich, F. M., and G. A. Maul, 1985: Cyclonic eddies in the eastern Gulf of Mexico. J. Phys. Oceanogr., 15, 105117.

  • Walker, N. D., S. Myint, A. Babin, and A. Haag, 2003: Advances in satellite radiometry for the surveillance of surface temperatures, ocean eddies and upwelling processes in the Gulf of Mexico using GOES-8 measurements during summer. Geophys. Res. Lett., 30, 1854, doi:10.1029/2003GL017555.

    • Search Google Scholar
    • Export Citation
  • Walker, N. D., R. R. Leben, S. Anderson, J. Feeney, P. Coholan, and N. Sharma, 2009: Study of Loop Current frontal eddies based on satellite remote sensing and drifter data. U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA, OCS Study MMS 2009-023, 78 pp.

  • Walker, N. D., and Coauthors, 2011: Impacts of a Loop Current frontal eddy cyclone and wind forcing on the 2010 Gulf of Mexico oil spill. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 103–116.

  • Wallace, J. M., and R. E. Dickinson, 1972: Empirical orthogonal representation of time series in the frequency domain: I. Theoretical considerations. J. Appl. Meteor., 11, 887892.

    • Search Google Scholar
    • Export Citation
  • Wells, M. G., and G.-J. F. van Heijst, 2003: A model of tidal flushing of an estuary by dipole formation. Dyn. Atmos. Oceans, 37, 223244.

    • Search Google Scholar
    • Export Citation
  • Zavala-Hidalgo, J., S. L. Morey, and J. J. O'Brien, 2003: Cyclonic eddies northeast of the Campeche Bank from altimetry data. J. Phys. Oceanogr., 33, 623629.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 243 60 15
PDF Downloads 166 54 9