Residual Sediment Fluxes in Weakly-to-Periodically Stratified Estuaries and Tidal Inlets

Hans Burchard Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany

Search for other papers by Hans Burchard in
Current site
Google Scholar
PubMed
Close
,
Henk M. Schuttelaars Delft Institute of Applied Mathematics, Delft University of Technology Delft, Netherlands

Search for other papers by Henk M. Schuttelaars in
Current site
Google Scholar
PubMed
Close
, and
W. Rockwell Geyer Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by W. Rockwell Geyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.

Corresponding author address: Hans Burchard, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, D-18119 Rostock, Germany. E-mail: hans.burchard@io-warnemuende.de

Abstract

In this idealized numerical modeling study, the composition of residual sediment fluxes in energetic (e.g., weakly or periodically stratified) tidal estuaries is investigated by means of one-dimensional water column models, with some focus on the sediment availability. Scaling of the underlying dynamic equations shows dependence of the results on the Simpson number (relative strength of horizontal density gradient) and the Rouse number (relative settling velocity) as well as impacts of the Unsteadiness number (relative tidal frequency). Here, the parameter space given by the Simpson and Rouse numbers is mainly investigated. A simple analytical model based on the assumption of stationarity shows that for small Simpson and Rouse numbers sediment flux is down estuary and vice versa for large Simpson and Rouse numbers. A fully dynamic water column model coupled to a second-moment turbulence closure model allows to decompose the sediment flux profiles into contributions from the transport flux (product of subtidal velocity and sediment concentration profiles) and the fluctuation flux profiles (tidal covariance between current velocity and sediment concentration). Three different types of bottom sediment pools are distinguished to vary the sediment availability, by defining a time scale for complete sediment erosion. For short erosion times scales, the transport sediment flux may dominate, but for larger erosion time scales the fluctuation sediment flux largely dominates the tidal sediment flux. When quarter-diurnal components are added to the tidal forcing, up-estuary sediment fluxes are strongly increased for stronger and shorter flood tides and vice versa. The theoretical results are compared to field observations in a tidally energetic inlet.

Corresponding author address: Hans Burchard, Leibniz Institute for Baltic Sea Research Warnemünde, Seestraße 15, D-18119 Rostock, Germany. E-mail: hans.burchard@io-warnemuende.de
Save
  • Allen, G. P., J. C. Salomon, P. Bassoullet, Y. Du Penhoat, and C. De Grandpre, 1980: Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment. Geol., 26, 69–90.

    • Search Google Scholar
    • Export Citation
  • Arndt, S., J.-P. Vanderborght, and P. Regnier, 2007: Diatom growth response to physical forcing in a macrotidal estuary: Coupling hydrodynamics, sediment transport, and biogeochemistry. J. Geophys. Res., 112, C05045, doi:10.1029/2006JC003581.

    • Search Google Scholar
    • Export Citation
  • Bartholdy, J., 2000: Processes controlling import of fine-grained sediments to tidal areas: A simulation model. Coastal and Estuarine Environments: Sedimentology, Geomorphology and Geoarchaeology, K. Pye and J. R. L. Allen, Eds., Geological Society of London, 13–30.

  • Becherer, J., H. Burchard, G. Flöser, V. Mohrholz, and L. Umlauf, 2011: Evidence of tidal straining in well-mixed channel flow from micro-structure observations. Geophys. Res. Lett.,38, L17611, doi:10.1029/2011GL049005.

  • Blaise, S., and E. Deleersnijder, 2008: Improving the parameterisation of horizontal density gradient in one-dimensional water column models for estuarine circulation. Ocean Sci., 4, 239–246.

    • Search Google Scholar
    • Export Citation
  • Borsje, B. W., M. B. de Vries, S. J. M. H. Hulscher, and G. J. de Boer, 2008: Modeling large-scale cohesive sediment transport affected by small scale biological activity. Estuarine Coastal Shelf Sci., 78, 468–480.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., and H. Ridderinkhof, 2008: Variability of secondary currents in a weakly stratified tidal inlet with low curvature. Cont. Shelf Res., 28, 1711–1723.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., 2009: Combined effects of wind, tide and horizontal density gradients on stratification in estuaries and coastal seas. J. Phys. Oceanogr., 39, 2117–2136.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and H. Baumert, 1998: The formation of estuarine turbidity maxima due to density effects in the salt wedge. A hydrodynamic process study. J. Phys. Oceanogr., 28, 309–321.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and R. D. Hetland, 2010: Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. J. Phys. Oceanogr., 40, 1243–1262.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., R. D. Hetland, E. Schulz, and H. M. Schuttelaars, 2011: Drivers of residual circulation in tidally energetic estuaries: Straight and irrotational estuaries with parabolic cross-section. J. Phys. Oceanogr., 41, 548–570.

    • Search Google Scholar
    • Export Citation
  • Cartwright, G. M., C. T. Friedrichs, P. Dickhudt, T. Gass, and F. Farmer, 2009: Using the acoustic Doppler velocimeter (ADV) in the MUDBED real-time observing system. Institute of Electrical and Electronic Engineers Tech. Rep. OCEANS 2009, 1428–1436.

  • Chernetsky, A., H. Schuttelaars, and S. Talke, 2010: The effect of tidal asymmetry and temporal settling lag on sediment trapping in tidal estuaries. Ocean Dyn.,60, 1219–1241, doi:10.1007/s10236-010-0329-8.

  • Davies, A. M., S. C. M. Kwong, and R. A. Flather, 1997: Formulation of a variable-function three-dimensional model, with applications to the M2 and M4 tide on the northwest European continental shelf. Cont. Shelf Res., 17, 165–204.

    • Search Google Scholar
    • Export Citation
  • Dickhudt, P. J., C. T. Friedrichs, L. C. Schaffner, and L. Sanford, 2009: Spatial and temporal variation in cohesive sediment erodibility in the York River estuary: A biologically-influenced equilibrium modified by seasonal deposition. Mar. Geol., 267, 128–140.

    • Search Google Scholar
    • Export Citation
  • Friedrichs, C. T., 2010: Barotropic tides in channelized flows. Contemporary Issues in Estuarine Physics, A. Valle-Levinson, Ed., Cambridge University Press, 27–61.

  • Friedrichs, C. T., B. D. Armbrust, and H. E. de Swart, 1998: Hydrodynamics and equilibrium sediment dynamics of shallow, funnel-shaped tidal estuaries. Physics of Estuaries and Coastal Seas, J. Dronkers and M. B. A. M. Scheffers, Eds., Balkema, 315–327.

  • Geyer, W. R., 1993: The importance of suppression of turbulence by stratification on the estuarine turbidity maximum. Estuaries, 16, 113–125.

    • Search Google Scholar
    • Export Citation
  • Geyer, W. R., J. Woodruff, and P. Traykovski, 2001: Sediment transport and trapping in the Hudson River Estuary. Estuaries, 24, 670–676.

    • Search Google Scholar
    • Export Citation
  • Groen, P., 1967: On the residual transport of suspended matter by an alternating tidal current. Neth. J. Sea Res., 3, 564–574.

  • Hansen, D. V., and M. Rattray, 1965: Gravitational circulation in straits and estuaries. J. Mar. Res., 23, 104–122.

  • Huijts, K. M. H., H. M. Schuttelaars, H. E. de Swart, and A. Valle-Levinson, 2006: Lateral entrapment of sediment in tidal estuaries: An idealized model study. J. Geophys. Res., 111, C12016, doi:10.1029/2006JC003615.

    • Search Google Scholar
    • Export Citation
  • Jay, D. A., and J. D. Musiak, 1994: Particle trapping in estuarine tidal flows. J. Geophys. Res., 99, 445–461.

  • Kappenberg, J., G. Schymura, and H.-U. Fanger, 1995: Sediment dynamics and estuarine circulation in the turbidity maximum of the Elbe River. Neth. J. Equatic Ecol., 29, 229–237.

    • Search Google Scholar
    • Export Citation
  • Krone, R. B., 1962: Flume studies of the transport of sediment in estuarial shoaling processes. Hydraulic Engineering Laboratory Tech. Rep., University of California, Berkeley, 110 pp.

  • Kuncheva, L. I., J. Wrench, L. C. Jain, and A. S. Al-Zaidan, 2000: A fuzzy model of heavy metal loadings in Liverpool bay. Environ. Model. Software, 15, 161–167.

    • Search Google Scholar
    • Export Citation
  • Lang, G., R. Schubert, M. Markowsky, H.-U. Fanger, I. Grabemann, H. L. Krasemann, L. J. R. Neumann, and R. Riethmüller, 1989: Data interpretation and numerical modelling of the Mud and Suspended Sediment Experiment 1985. J. Geophys. Res., 94 (C10), 14 381–14 393.

    • Search Google Scholar
    • Export Citation
  • Lerczak, J. A., and W. R. Geyer, 2004: Modeling the lateral circulation in straight, stratified estuaries. J. Phys. Oceanogr., 34, 1410–1428.

    • Search Google Scholar
    • Export Citation
  • Postma, H., 1954: Hydrography of the Dutch Wadden Sea. Arch. Neerl. Zool., 10, 405–511.

  • Postma, H., 1961: Transport and accumulation of suspended particulate matter in the Dutch Wadden Sea. Neth. J. Sea Res., 1, 149–190.

    • Search Google Scholar
    • Export Citation
  • Postma, H., 1981: Exchange of materials between the North Sea and the Wadden Sea. Mar. Geol., 40, 199–213.

  • Schartau, M., A. Engel, J. Schröter, S. Thoms, C. Völker, and D. Wolf-Gladrow, 2007: Modelling carbon overconsumption and the formation of extracellular particulate organic carbon. Biogeosciences, 4, 433–454.

    • Search Google Scholar
    • Export Citation
  • Schramkowski, G. P., and H. E. de Swart, 2002: Morphodynamic equilibrium in straight tidal channels: Combined effects of Coriolis force and external overtides. J. Geophys. Res., 107, 3227, doi:10.1029/2000JC000693.

    • Search Google Scholar
    • Export Citation
  • Schuttelaars, H. M., V. N. de Jonge, and A. Chernetsky, 2013: Improving the predictive power when modelling physical effects of human interventions in estuarine systems. Ocean Coastal Manage.,79, 70–82.

  • Scully, M. E., and C. T. Friedrichs, 2007a: The importance of tidal and lateral asymmetries in stratification to residual circulation in partially mixed estuaries. J. Phys. Oceanogr., 37, 1496–1511.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., and C. T. Friedrichs, 2007b: Sediment pumping by tidal asymmetry in a partially mixed estuary. J. Geophys. Res.,112, C07028, doi:10.1029/2006JC003784.

  • Scully, M. E., C. T. Friedrichs, and J. M. Brubaker, 2005: Control of estuarine stratification and mixing by wind-induced straining of the estuarine density field. Estuaries, 28, 321–326.

    • Search Google Scholar
    • Export Citation
  • Scully, M. E., W. R. Geyer, and J. A. Lerczak, 2009: The influence of lateral advection on the residual estuarine circulation: A numerical modeling study of the Hudson River estuary. J. Phys. Oceanogr., 39, 107–124.

    • Search Google Scholar
    • Export Citation
  • Sheng, Y. P., and C. Villaret, 1989: Modeling the effect of suspended sediment stratification on bottom exchange processes. J. Geophys. Res., 94 (C10), 14 429–14 444.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., 1997: Physical processes in the ROFI regime. J. Mar. Syst., 12, 3–15.

  • Simpson, J. H., J. Brown, J. Matthews, and G. Allen, 1990: Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries, 26, 1579–1590.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., R. Vennell, and A. Souza, 2001: The salt fluxes in a tidally energetic estuary. Estuarine Coastal Shelf Sci., 52, 131–142.

    • Search Google Scholar
    • Export Citation
  • Souza, A. J., and A. Lane, 2012: Effects of freshwater inflow on sediment transport. J. Oper. Oceanogr., 6, 27–31.

  • Stacey, M. T., J. R. Burau, and S. G. Monismith, 2001: Creation of residual flows in a partially stratified estuary. J. Geophys. Res., 106 (C8), 17 013–17 037.

    • Search Google Scholar
    • Export Citation
  • Talke, S. A., H. E. de Swart, and H. M. Schuttelaars, 2009: Feedback between residual circulations and sediment distribution in highly turbid estuaries: An analytical model. Cont. Shelf Res., 29, 119–135.

    • Search Google Scholar
    • Export Citation
  • Umlauf, L., and H. Burchard, 2005: Second-order turbulence models for geophysical boundary layers. A review of recent work. Cont. Shelf Res., 25, 795–827.

    • Search Google Scholar
    • Export Citation
  • van Beusekom, J. E. E., and V. de Jonge, 2002: Long-term changes in Wadden Sea nutrient cycles: Importance of organic matter import from the North Sea. Hydrobiologia, 475–476, 185–194.

    • Search Google Scholar
    • Export Citation
  • van Kessel, T., H. Winterwerp, B. V. Prooijen, M. V. Ledden, and W. Borst, 2011: Modelling the seasonal dynamics of SPM with a simple algorithm for the buffering of fines in a sandy seabed. Cont. Shelf Res.,31, S124–S134.

  • van Straaten, L., and P. Kuenen, 1958: Tidal action as a cause of clay accumulation. J. Sediment. Res., 28, 406–413.

  • Wellershaus, S., 1981: Turbidity maximum and shoaling in the Weser estuary. Arch. Hydrobiol., 92, 161–198.

  • Winterwerp, J. C., and T. van Kessel, 2003: Siltation by sediment-induced density currents. Ocean Dyn., 53, 186–196.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 508 106 5
PDF Downloads 371 107 4