Simulations of Nearshore Particle-Pair Dispersion in Southern California

Leonel Romero Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by Leonel Romero in
Current site
Google Scholar
PubMed
Close
,
Yusuke Uchiyama Department of Civil Engineering, Kobe University, Kobe, Japan

Search for other papers by Yusuke Uchiyama in
Current site
Google Scholar
PubMed
Close
,
J. Carter Ohlmann Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by J. Carter Ohlmann in
Current site
Google Scholar
PubMed
Close
,
James C. McWilliams Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
, and
David A. Siegel Earth Research Institute, University of California, Santa Barbara, Santa Barbara, California

Search for other papers by David A. Siegel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Knowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy ~10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.

Corresponding author address: Leonel Romero, 6832 Ellison Hall, Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-3060. E-mail: leromero@eri.ucsb.edu

Abstract

Knowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy ~10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.

Corresponding author address: Leonel Romero, 6832 Ellison Hall, Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106-3060. E-mail: leromero@eri.ucsb.edu
Save
  • Babiano, A., C. Basdevant, P. Le Roy, and R. Sadourny, 1990: Relative dispersion in two-dimensional turbulence. J. Fluid Mech., 214, 535–557, doi:10.1017/S0022112090000258.

    • Search Google Scholar
    • Export Citation
  • Bassin, C. J., L. Washburn, M. Brzezinski, and E. McPhee-Shaw, 2005: Sub-mesoscale coastal eddies observed by high frequency radar: A new mechanism for delivering nutrients to kelp forests in the Southern California Bight. Geophys. Res. Lett., 32, L12604, doi:10.1029/2005GL023017.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G., 1950: The application of the similarity theory of turbulence to atmospheric diffusion. Quart. J. Roy. Meteor. Soc., 76, 133–146.

    • Search Google Scholar
    • Export Citation
  • Becker, J. J., D. T. Sandwell, W. H. F. Smith, and J. Braud, 2009: Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30 _ PLUS. Mar. Geod., 32, 355–371.

    • Search Google Scholar
    • Export Citation
  • Bennett, A. F., 1987: A Lagrangian analysis of turbulent diffusion. Rev. Geophys., 25, 799–822.

  • Boffetta, G., G. Lacorata, G. Redaelli, and A. Vulpiani, 2001: Detecting barriers to transport: A review of different techniques. Physica D, 159, 58–70, doi:10.1016/S0167-2789(01)00330-X.

    • Search Google Scholar
    • Export Citation
  • Boffetta, G., A. Mazzino, and A. Vulpiani, 2008: Transport of inert and reactive particles. Transport and Mixing in Geophysical Flows, J. B. Weiss and A. Provenzale, Eds., Springer, 37–70.

  • Buijsman, M. C., Y. Uchiyama, J. C. McWilliams, and C. R. Hill-Lindsay, 2012: Modeling semidiurnal internal tide variability in the Southern California Bight. J. Phys. Oceanogr., 42, 62–77.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and F. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 29–43.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 44–64.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and F. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California Current System. Part III: Energy balance and flux. J. Phys. Oceanogr., 38, 2256–2269.

    • Search Google Scholar
    • Export Citation
  • Clark, D. B., F. Feddersen, and R. T. Guza, 2010: Cross-shore surfzone tracer dispersion in an alongshore current. J. Geophys. Res., 115, C10035, doi:10.1029/2009JC005683.

    • Search Google Scholar
    • Export Citation
  • Cowen, R. K., and S. Sponaugle, 2009: Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci., 1, 443–466, doi:10.1146/annurev.marine.010908.163757.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1983: Oceanic property transport, Lagrangian particle statistics, and their prediction. J. Mar. Res., 41, 163–194.

  • Davis, R. E., 1985: Drifter observations of coastal surface currents during CODE: The statistical and dynamical views. J. Geophys. Res., 90, 4756–4772.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1991: Lagrangian ocean studies. Annu. Rev. Fluid Mech., 23, 43–64.

  • Dong, C., and J. C. McWilliams, 2007: A numerical study of island wakes in the Southern California Bight. Cont. Shelf Res., 27, 1233–1248, doi:10.1016/j.csr.2007.01.016.

    • Search Google Scholar
    • Export Citation
  • Döös, K., V. Rupolo, and L. Brodeau, 2011: Dispersion of surface drifters and model-simulated trajectories. Ocean Modell., 39, 301–310, doi:10.1016/j.ocemod.2011.05.005.

    • Search Google Scholar
    • Export Citation
  • D'Ovidio, F., V. Fernández, E. Hernández-García, and C. López, 2004: Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys. Res. Lett., 31, L17203, doi:10.1029/2004GL020328.

    • Search Google Scholar
    • Export Citation
  • Drake, P. T., and C. A. Edwards, 2009: A linear diffusivity model of near-surface, cross-shore particle dispersion from a numerical simulation of central California's coastal ocean. J. Mar. Res., 67, 385–409.

    • Search Google Scholar
    • Export Citation
  • Fischer, H. B., E. J. List, R. C. Y. Koh, J. Imberger, and N. H. Brooks, 1979: Mixing in Inland and Coastal Waters. Academic Press, 483 pp.

  • Flament, P., L. Armi, and L. Washburn, 1985: The evolving structure of an upwelling filament. J. Geophys. Res., 90, 11 765–11 778.

    • Search Google Scholar
    • Export Citation
  • Harrison, C. S., D. A. Siegel, and S. Mitarai, 2013: The role of filamentation and eddy-eddy interactions in marine larval accumulation and transport. Mar. Ecol. Prog. Ser., 472, 27–44, doi:10.3354/meps10061.

    • Search Google Scholar
    • Export Citation
  • Haza, A. C., A. C. Poje, T. M. Özgökmen, and P. Martin, 2008: Relative dispersion from a high-resolution coastal model of the Adriatic Sea. Ocean Modell., 22, 48–65, doi:10.1016/j.ocemod.2008.01.006.

    • Search Google Scholar
    • Export Citation
  • Haza, A. C., T. M. Özgökmen, A. Griffa, Z. D. Garraffo, and L. Piterbarg, 2012: Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Modell., 42, 31–49, doi:10.1016/j.ocemod.2011.11.005.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J. H., 2008: Statistics from Lagrangian observations. Prog. Oceanogr., 77, 1–29, doi:10.1016/j.pocean.2008.02.002.

  • LaCasce, J. H., and C. Ohlmann, 2003: Relative dispersion at the surface of the Gulf of Mexico. J. Mar. Res., 61, 285–312.

  • Largier, J., 2003: Considerations in estimating larval dispersal distances. Ecol. Appl., 13, 71–89.

  • Lentz, S. J., and M. R. Fewings, 2012: The wind- and wave-driven inner-shelf circulation. Annu. Rev. Mar. Sci., 4, 317–343, doi:10.1146/annurev-marine-120709-142745.

    • Search Google Scholar
    • Export Citation
  • Lin, J., 1972: Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence. J. Atmos. Sci., 29, 394–396.

    • Search Google Scholar
    • Export Citation
  • List, E. J., G. Gartrell, and C. D. Winant, 1990: Diffusion and dispersion in coastal waters. J. Hydraul. Eng., 116, 1158–1179.

  • Lumpkin, R., and S. Elipot, 2010: Surface drifter pair spreading in the North Atlantic. J. Geophys. Res., 115, C12017, doi:10.1029/2010JC006338.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1984: The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 21–43.

  • McWilliams, J. C., 2009: Dynamics of atmospheres and oceans targeted coastal circulation phenomena in diagnostic analyses and forecasts. Dyn. Atmos. Oceans, 48, 3–15, doi:10.1016/j.dynatmoce.2008.12.004.

    • Search Google Scholar
    • Export Citation
  • Mitarai, S., D. A. Siegel, J. R. Watson, C. Dong, and J. C. McWilliams, 2009: Quantifying connectivity in the coastal ocean with application to the Southern California Bight. J. Geophys. Res.,114, C10026, doi:10.1029/2008JC005166.

  • Morel, P., and M. Larcheveque, 1974: Relative dispersion of constant-level balloons in the 200-mb general circulation. J. Atmos. Sci., 31, 2189–2196.

    • Search Google Scholar
    • Export Citation
  • Nickols, K. J., B. Gaylord, and J. L. Largier, 2012: The coastal boundary layer: Predictable current structure decreases alongshore transport and alters scales of dispersal. Mar. Ecol. Prog. Ser., 464, 17–35, doi:10.3354/meps09875.

    • Search Google Scholar
    • Export Citation
  • O'Dwyer, J., R. G. Williams, J. H. Lacasce, and K. G. Speer, 2000: Does the potential vorticity distribution constrain the spreading of floats in the North Atlantic? J. Phys. Oceanogr., 30,721–732.

    • Search Google Scholar
    • Export Citation
  • Ohlmann, J. C., J. H. LaCasce, L. Washburn, A. J. Mariano, and B. Emery, 2012: Relative dispersion observations and trajectory modeling in the Santa Barbara Channel. J. Geophys. Res., 117, C05040, doi:10.1029/2011JC007810.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res. Oceanogr. Abstr., 17, 445–454.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., C. Gabillet, and A. C. De Verdière, 2005: Open ocean regimes of relative dispersion. J. Fluid Mech., 533, 381–407, doi:10.1017/S0022112005004556.

    • Search Google Scholar
    • Export Citation
  • Poje, A. C., A. C. Haza, T. M. Özgökmen, M. G. Magaldi, and Z. D. Garraffo, 2010: Resolution dependent relative dispersion statistics in a hierarchy of ocean models. Ocean Modell., 31, 36–50, doi:10.1016/j.ocemod.2009.09.002.

    • Search Google Scholar
    • Export Citation
  • Richardson, L., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, A110, 709–737.

  • Romero, L., and W. K. Melville, 2011: Spatial statistics of the sea surface in fetch-limited conditions. J. Phys. Oceanogr., 41, 1821–1841.

    • Search Google Scholar
    • Export Citation
  • Schroeder, K., and Coauthors, 2012: Targeted Lagrangian sampling of submesoscale dispersion at a coastal frontal zone. Geophys. Res. Lett., 39, L11608, doi:10.1029/2012GL051879.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): Oceanic model. Ocean Modell., 9, 347–404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Signell, R., and W. Geyer, 1990: Numerical simulation of tidal dispersion around a coastal headland. Coastal and Estuarine Studies, Geophys. Monogr., Vol. 38, Amer. Geophys. Union, 210–222.

  • Signell, R., and W. Geyer, 1991: Transient eddy formation around headlands. J. Geophys. Res., 96, 2561–2575.

  • Spydell, M. S., F. Feddersen, and R. T. Guza, 2009: Observations of drifter dispersion in the surfzone: The effect of sheared alongshore currents. J. Geophys. Res., 114, C07028, doi:10.1029/2009JC005328.

    • Search Google Scholar
    • Export Citation
  • Swenson, M. S., and P. P. Niiler, 1996: Statistical analysis of the surface circulation of the California Current. J. Geophys. Res., 101, 22 631–22 645.

    • Search Google Scholar
    • Export Citation
  • Taylor, G., 1922: Diffusion by Continuous Movements. Proc. London Math. Soc.,s2-20, 196–212.

  • Washburn, L., and L. Armi, 1988: Observations of frontal instabilities on an upwelling filament. J. Phys. Oceanogr., 18, 1075–1092.

    • Search Google Scholar
    • Export Citation
  • Waugh, D. W., E. R. Abraham, and M. M. Bowen, 2006: Spatial variations of stirring in the surface ocean: A case study of the Tasman Sea. J. Phys. Oceanogr., 26, 526–542.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273–294.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2365 903 108
PDF Downloads 427 113 8