Mesoscale Eddy Energy Locality in an Idealized Ocean Model

Ian Grooms Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York, New York

Search for other papers by Ian Grooms in
Current site
Google Scholar
PubMed
Close
,
Louis-Philippe Nadeau Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York, New York

Search for other papers by Louis-Philippe Nadeau in
Current site
Google Scholar
PubMed
Close
, and
K. Shafer Smith Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York, New York

Search for other papers by K. Shafer Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper investigates the energy budget of mesoscale eddies in wind-driven two-layer quasigeostrophic simulations. Intuitively, eddy energy can be generated, dissipated, and fluxed from place to place; regions where the budget balances generation and dissipation are “local” and regions that export or import large amounts of eddy energy are “nonlocal.” Many mesoscale parameterizations assume that statistics of the unresolved eddies behave as local functions of the resolved large scales, and studies that relate doubly periodic simulations to ocean patches must assume that the ocean patches have local energetics. This study derives and diagnoses the eddy energy budget in simulations of wind-driven gyres. To more closely approximate the ideas of subgrid-scale parameterization, the authors define the mean and eddies using a spatial filter rather than the more common time average. The eddy energy budget is strongly nonlocal over nearly half the domain in the simulations. In particular, in the intergyre region the eddies lose energy through interactions with the mean, and this energy loss can only be compensated by nonlocal flux of energy from elsewhere in the domain. This study also runs doubly periodic simulations corresponding to ocean patches from basin simulations. The eddy energy level of ocean patches in the basin simulations matches the level in the periodic simulations only in regions with local eddy energy budgets.

Corresponding author address: Ian Grooms, Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: grooms@cims.nyu.edu

Abstract

This paper investigates the energy budget of mesoscale eddies in wind-driven two-layer quasigeostrophic simulations. Intuitively, eddy energy can be generated, dissipated, and fluxed from place to place; regions where the budget balances generation and dissipation are “local” and regions that export or import large amounts of eddy energy are “nonlocal.” Many mesoscale parameterizations assume that statistics of the unresolved eddies behave as local functions of the resolved large scales, and studies that relate doubly periodic simulations to ocean patches must assume that the ocean patches have local energetics. This study derives and diagnoses the eddy energy budget in simulations of wind-driven gyres. To more closely approximate the ideas of subgrid-scale parameterization, the authors define the mean and eddies using a spatial filter rather than the more common time average. The eddy energy budget is strongly nonlocal over nearly half the domain in the simulations. In particular, in the intergyre region the eddies lose energy through interactions with the mean, and this energy loss can only be compensated by nonlocal flux of energy from elsewhere in the domain. This study also runs doubly periodic simulations corresponding to ocean patches from basin simulations. The eddy energy level of ocean patches in the basin simulations matches the level in the periodic simulations only in regions with local eddy energy budgets.

Corresponding author address: Ian Grooms, Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012. E-mail: grooms@cims.nyu.edu
Save
  • Arakawa, A., 1966: Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I. J. Comput. Phys., 1, 119143.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. Flierl, 2004a: Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J. Phys. Oceanogr., 34, 7793.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and G. Flierl, 2004b: Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to midocean eddies. J. Phys. Oceanogr., 34, 22572273.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., and R. B. Scott, 2008: On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. J. Phys. Oceanogr., 38, 84103.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., 2008: An energy-constrained parameterization of eddy buoyancy flux. J. Phys. Oceanogr., 38, 18071819.

  • Chelton, D. B., M. G. Schlax, R. M. Samelson, and R. A. de Szoeke, 2007: Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606, doi:10.1029/2007GL030812

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., M. G. Schlax, and R. M. Samelson, 2011: Global observations of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167216.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy closure. Ocean Modell., 20, 223239.

  • Ferrari, R., S. M. Griffies, A. J. G. Nurser, and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Gill, A. E., J. S. A. Green, and A. J. Simmons, 1974: Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res., 21, 499528.

    • Search Google Scholar
    • Export Citation
  • Grooms, I., K. S. Smith, and A. J. Majda, 2012: Multiscale models for synoptic-mesoscale interactions in the oceans. Dyn. Atmos. Oceans, 58, 95107.

    • Search Google Scholar
    • Export Citation
  • Hall, M. M., 1986: A diagnostic investigation of kinetic energy budgets in a numerical model. J. Geophys. Res., 91 (C2), 25552568.

  • Harrison, D. E., 1979: Eddies and the general circulation of numerical model gyres: An energetic perspective. Rev. Geophys. Space Phys., 17, 969979.

    • Search Google Scholar
    • Export Citation
  • Harrison, D. E., and A. R. Robinson, 1978: Energy analysis of open ocean regions of turbulent flows—Mean eddy energetics of a numerical ocean circulation experiment. Dyn. Atmos. Oceans, 2, 185211.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., 1978: The role of mesoscale eddies in the general circulation of the ocean—Numerical experiments using a wind-driven quasi-geostrophic model. J. Phys. Oceanogr., 8, 363392.

    • Search Google Scholar
    • Export Citation
  • Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean eddies: Potential vorticity mixing, energetics, and Arnold's first stability theorem. Ocean Modell., 32, 188204.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., 1977: A note on a consistent quasigeostrophic model in a multiply connected domain. Dyn. Atmos. Oceans, 1, 427441.

    • Search Google Scholar
    • Export Citation
  • Nadiga, B. T., 2008: Orientation of eddy fluxes in geostrophic turbulence. Philos. Trans. Roy. Soc., A366, 24912510.

  • Nadiga, B. T., and D. N. Straub, 2010: Alternating zonal jets and energy fluxes in barotropic wind-driven gyres. Ocean Modell., 33, 257269.

    • Search Google Scholar
    • Export Citation
  • Poulin, F. J., G. R. Flierl, and J. Pedlosky, 2010: The baroclinic adjustment of time-dependent shear flows. J. Phys. Oceanogr., 40, 18511865.

    • Search Google Scholar
    • Export Citation
  • Rhines, P. B., and R. Schopp, 1991: The wind-driven circulation: Quasi-geostrophic simulations and theory for nonsymmetric winds. J. Phys. Oceanogr., 21, 14381469.

    • Search Google Scholar
    • Export Citation
  • Smith, K. S., 2007: Eddy amplitudes in baroclinic turbulence driven by nonzonal mean flow: Shear dispersion of potential vorticity. J. Phys. Oceanogr., 37, 10371050.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2000: Generation of strong mesoscale eddies by weak ocean gyres. J. Mar. Res., 58, 97116.

  • Treguier, A. M., 1992: Kinetic energy analysis of an eddy resolving, primitive equation model of the North Atlantic. J. Geophys. Res., 97, 687701.

    • Search Google Scholar
    • Export Citation
  • Venaille, A., G. K. Vallis, and K. S. Smith, 2011: Baroclinic turbulence in the ocean: Analysis with primitive equation and quasigeostrophic simulations. J. Phys. Oceanogr., 41, 16051622.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 650 279 110
PDF Downloads 403 106 4