• Anderson, D. L., and P. D. Killworth, 1977: Spin-up of a stratified ocean, with topography. Deep-Sea Res., 24, 709732.

  • Arakawa, A., and V. Lamb, 1981: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Wea. Rev., 109, 1836.

    • Search Google Scholar
    • Export Citation
  • Barnston, A., and R. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126.

    • Search Google Scholar
    • Export Citation
  • Barrier, N., A.-M. Treguier, C. Cassou, and J. Deshayes, 2013: Impact of the winter North-Atlantic weather regimes on subtropical sea-surface height variability. Climate Dyn., 41, 1159–1171.

    • Search Google Scholar
    • Export Citation
  • Bellucci, A., S. Gualdi, E. Scoccimarro, and A. Navarra, 2008: NAO–ocean circulation interactions in a coupled general circulation model. Climate Dyn., 31, 759777.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., C. W. Böning, J. Getzlaff, J.-M. Molines, and G. Madec, 2008: Causes of interannual–decadal variability in the meridional overturning circulation of the midlatitude North Atlantic Ocean. J. Climate, 21, 65996615.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., M. Scheinert, J. Dengg, A. Biastoch, and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33, L21S01, doi:10.1029/2006GL026906.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A.-M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell.,31, 88–104, doi:10.1016/j.ocemod.2009.10.005.

  • Cabanes, C., T. Huck, and A. C. De Verdiere, 2006: Contributions of wind forcing and surface heating to interannual sea level variations in the Atlantic Ocean. J. Phys. Oceanogr., 36, 17391750.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., L. Terray, J. Hurrell, and C. Deser, 2004: North Atlantic winter climate regimes: Spatial asymmetry, stationarity with time, and oceanic forcing. J. Climate, 17, 10551068.

    • Search Google Scholar
    • Export Citation
  • Cassou, C., M. Minvielle, L. Terray, and C. Périgaud, 2011: A statistical–dynamical scheme for reconstructing ocean forcing in the Atlantic. Part I: Weather regimes as predictors for ocean surface variables. Climate Dyn., 36, 1939.

    • Search Google Scholar
    • Export Citation
  • Curry, R., and M. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31, 33743400.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., W. G. Large, and B. P. Briegleb, 2010: Climate impacts of parameterized Nordic sea overflows. J. Geophys. Res.,115, C11005, doi:10.1029/2010JC006243.

  • Deshayes, J., F. Straneo, and M. A. Spall, 2009: Mechanisms of variability in a convective basin. J. Mar. Res., 67, 273303.

  • Dickson, R. R. and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res.,99 (C6), 12 319–12 341.

  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676691.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and R. J. Greatbatch, 2003: A damped decadal oscillation in the North Atlantic climate system. J. Climate, 16, 40434060.

  • Fichefet, T., and M. Maqueda, 1997: Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J. Geophys. Res., 102 (C6), 12 60912 646.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Getzlaff, J., C. W. Böning, C. Eden, and A. Biastoch, 2005: Signal propagation related to the North Atlantic overturning. Geophys. Res. Lett., 32, L09602, doi:10.1029/2004GL021002.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2009: Coordinated Ocean–Ice Reference Experiments (COREs). Ocean Modell., 26, 146.

  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555559.

  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011a: Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334, 655659.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011b: Warm and saline events embedded in the meridional circulation of the northern North Atlantic. J. Geophys. Res., 116, C03006, doi:10.1029/2010JC006275.

    • Search Google Scholar
    • Export Citation
  • Hátún, H., A. B. Sandø, H. Drange, B. Hansen, and H. Valdimarsson, 2005: Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science, 309, 18411844.

    • Search Google Scholar
    • Export Citation
  • Herbaut, C., and M.-N. Houssais, 2009: Response of the eastern North Atlantic subpolar gyre to the North Atlantic Oscillation. Geophys. Res. Lett., 36, L17607, doi:10.1029/2009GL039090.

    • Search Google Scholar
    • Export Citation
  • Hong, B. G., W. Sturges, and A. J. Clarke, 2000: Sea level on the U.S. East Coast: Decadal variability caused by open ocean wind-curl forcing. J. Phys. Oceanogr., 30, 20882098.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitations. Science, 269, 676679.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., and J. Marotzke, 2001: The dynamics of ocean heat transport variability. Rev. Geophys., 39, 385411.

  • Jungclaus, J., H. Haak, M. Latif, and U. Mikolajewicz, 2005: Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Climate, 18, 40134031.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471.

  • Koblinsky, C., 1990: The global distribution of f/H and the barotropic response of the ocean. J. Geophys. Res., 95 (C3), 32133218.

  • Köhl, A., and D. Stammer, 2008: Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J. Phys. Oceanogr., 38, 19131930.

    • Search Google Scholar
    • Export Citation
  • Langehaug, H. R., I. Medhaug, T. Eldevik, and O. H. Ottera, 2012: Arctic/Atlantic exchanges via the subpolar gyre. J. Climate, 25, 24212439.

    • Search Google Scholar
    • Export Citation
  • Large, W. G. and S. G. Yeager, 2004: Diurnal to decadal global forcing for ocean and sea-ice models: The data sets and flux climatologies. NCAR Tech. Note NCAR/TN-460+STR, 105 pp.

  • Large, W. G., and S. G. Yeager, 2009: The global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447.

    • Search Google Scholar
    • Export Citation
  • Levitus, S., and Coauthors, 1998: Introduction. Vol. 1, World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 pp.

  • Levitus, S., J. Antonov, J. Wang, T. Delworth, K. Dixon, and A. Broccoli, 2001: Anthropogenic warming of Earth’s climate system. Science, 292, 267270.

    • Search Google Scholar
    • Export Citation
  • Lohmann, K., H. Drange, and M. Bentsen, 2009: Response of the North Atlantic subpolar gyre to persistent North Atlantic Oscillation like forcing. Climate Dyn., 32, 273285.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. IPSL Note du Pôle de modélisation 27, Version 3.2, 219 pp.

  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421.

    • Search Google Scholar
    • Export Citation
  • Medhaug, I., H. Langehaug, T. Eldevik, T. Furevik, and M. Bentsen, 2012: Mechanisms for decadal scale variability in a simulated Atlantic meridional overturning circulation. Climate Dyn., 39, 77–93.

    • Search Google Scholar
    • Export Citation
  • Michelangi, P.-A., R. Vautard, and B. Legras, 1995: Weather regimes: Recurrence and quasi stationarity. J. Atmos. Sci., 52, 12371256.

    • Search Google Scholar
    • Export Citation
  • Minvielle, M., C. Cassou, R. Bourdalle-Badie, L. Terray, and J. Najac, 2011: A statistical-dynamical scheme for reconstructing ocean forcing in the Atlantic. Part II: Methodology, validation and application to high-resolution ocean models. Climate Dyn., 36, 401417.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., and C. Frankignoul, 2009: Atlantic multidecadal oceanic variability and its influence on the atmosphere in a climate model. Climate Dyn., 33, 4562.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., and M. A. Spall, 2007: Impact of Labrador Sea convection on the North Atlantic meridional overturning circulation. J. Phys. Oceanogr., 37, 22072227.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and G. Madec, 2000: Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models. J. Geophys. Res., 105 (C10), 23 92723 942.

    • Search Google Scholar
    • Export Citation
  • Ruprich-Robert, Y., and C. Cassou, 2013: Combined influences of seasonal east Atlantic pattern and North Atlantic Oscillation to excite Atlantic multidecadal variability in a climate model. Climate Dyn., in press.

    • Search Google Scholar
    • Export Citation
  • Rust, H. W., M. Vrac, M. Lengaigne, and B. Sultan, 2010: Quantifying differences in circulation patterns based on probabilistic models: IPCC AR4 multimodel comparison for the North Atlantic. J. Climate, 23, 65736589.

    • Search Google Scholar
    • Export Citation
  • Sarafanov, A., A. Falina, A. Sokov, and A. Demidov, 2008: Intense warming and salinification of intermediate waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s. J. Geophys. Res.,113, C12022, doi:10.1029/2008JC004975.

  • Scherrer, S., M. Croci-Maspoli, C. Schwierz, and C. Appenzeller, 2006: Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int. J. Climatol.,26, 233–249, doi:10.1002/joc.1250.

  • Schweckendiek, U., and J. Willebrand, 2005: Mechanisms affecting the overturning response in global warming simulations. J. Climate, 18, 49254936.

    • Search Google Scholar
    • Export Citation
  • Smith, R., M. Maltrud, F. O. Bryan, and M. W. Hecht, 2000: Numerical simulation of the North Atlantic Ocean at 1/10°. J. Phys. Oceanogr., 30, 15321561.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606628.

  • Treguier, A. M., S. Theetten, E. Chassignet, T. Penduff, R. Smith, L. Talley, J. Beismann, and C. Böning, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35, 757774.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., M. H. England, S. R. Rintoul, G. Madec, J. Le Sommer, and J. M. Molines, 2007: Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current. Ocean Sci., 3, 491507.

    • Search Google Scholar
    • Export Citation
  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc.,131, 2961–3012.

  • Vautard, R., 1990: Multiple weather regimes over the North Atlantic: Analysis of precursors and successors. Mon. Wea. Rev., 118, 20562081.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., H. Cullen, G. Krahmann, and N. Naik, 1998: An ocean model’s response to North Atlantic Oscillation-like wind forcing. Geophys. Res. Lett., 25, 45214524.

    • Search Google Scholar
    • Export Citation
  • Vivier, F., K. Kelly, and L. Thompson, 1999: Contributions of wind forcing, waves, and surface heating to sea surface height observations in the Pacific Ocean. J. Geophys. Res., 104 (C9), 20 76720 788.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and E. Demirov, 2011: On the mechanism of interannual variability of the Irminger Water in the Labrador Sea. J. Geophys. Res.,116, C03014, doi:10.1029/2009JC005677.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 464 234 32
PDF Downloads 334 165 27

Response of North Atlantic Ocean Circulation to Atmospheric Weather Regimes

View More View Less
  • 1 Laboratoire de Physique des Oceans, UMR 6523, CNRS/Ifremer/UBO/IRD, Brest, France
  • | 2 CNRS Cerfacs, Toulouse, France
  • | 3 Laboratoire de Physique des Oceans, UMR 6523, CNRS/Ifremer/UBO/IRD, Brest, France
Restricted access

Abstract

A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO conditions. These responses are driven by changes in deep water formation in the Labrador Sea.

Corresponding author address: Nicolas Barrier, LPO, UMR 6523, CNRS/Ifremer/UBO/IRD, Pointe du Diable, 29280 Plouzané, France. E-mail: nicolas.barrier@ifremer.fr

Abstract

A new framework is proposed for investigating the atmospheric forcing of North Atlantic Ocean circulation. Instead of using classical modes of variability, such as the North Atlantic Oscillation (NAO) or the east Atlantic pattern, the weather regimes paradigm was used. Using this framework helped avoid problems associated with the assumptions of orthogonality and symmetry that are particular to modal analysis and known to be unsuitable for the NAO. Using ocean-only historical and sensitivity experiments, the impacts of the four winter weather regimes on horizontal and overturning circulations were investigated. The results suggest that the Atlantic Ridge (AR), negative NAO (NAO), and positive NAO (NAO+) regimes induce a fast (monthly-to-interannual time scales) adjustment of the gyres via topographic Sverdrup dynamics and of the meridional overturning circulation via anomalous Ekman transport. The wind anomalies associated with the Scandinavian blocking regime (SBL) are ineffective in driving a fast wind-driven oceanic adjustment. The response of both gyre and overturning circulations to persistent regime conditions was also estimated. AR causes a strong, wind-driven reduction in the strengths of the subtropical and subpolar gyres, while NAO+ causes a strengthening of the subtropical gyre via wind stress curl anomalies and of the subpolar gyre via heat flux anomalies. NAO induces a southward shift of the gyres through the southward displacement of the wind stress curl. The SBL is found to impact the subpolar gyre only via anomalous heat fluxes. The overturning circulation is shown to spin up following persistent SBL and NAO+ and to spin down following persistent AR and NAO conditions. These responses are driven by changes in deep water formation in the Labrador Sea.

Corresponding author address: Nicolas Barrier, LPO, UMR 6523, CNRS/Ifremer/UBO/IRD, Pointe du Diable, 29280 Plouzané, France. E-mail: nicolas.barrier@ifremer.fr
Save