• Aiki, H., and K. J. Richards, 2008: Energetics of the global ocean: The role of layer-thickness form drag. J. Phys. Oceanogr., 38, 18451869.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2012: Thickness-weighted mean theory for the effect of surface gravity waves on mean flows in the upper ocean. J. Phys. Oceanogr., 42, 725747.

    • Search Google Scholar
    • Export Citation
  • Aiki, H., and R. J. Greatbatch, 2013: The vertical structure of the surface wave radiation stress on circulation over a sloping bottom as given by thickness-weighted-mean theory. J. Phys. Oceanogr., 43, 149164.

    • Search Google Scholar
    • Export Citation
  • Andrews, D. G., 1983: A finite-amplitude Eliassen–Palm theorem in isentropic coordinates. J. Atmos. Sci., 40, 18771883.

  • Andrews, D. G., and M. E. McIntyre, 1978: An exact theory of nonlinear waves on a Lagrangian-mean flow. J. Fluid Mech., 89, 609646.

  • Ardhuin, F., A. D. Jenkins, and K. A. Belibassakis, 2008a: Comments on “The three-dimensional current and surface wave equations” by George Mellor. J. Phys. Oceanogr., 38, 13401350.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., N. Rascle, and K. Belibassakis, 2008b: Explicit wave-averaged primitive equations using a generalized Lagrangian mean. Ocean Modell., 20, 3560.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 1985: On the conversion between mean and eddy components of potential and kinetic energy in isentropic and isopycnic coordinates. Dyn. Atmos. Oceans, 9, 1737.

    • Search Google Scholar
    • Export Citation
  • Broström, G., K. H. Christensen, and J. E. H. Weber, 2008: A quasi-Eulerian, quasi-Lagrangian view of surface-wave-induced flow in the ocean. J. Phys. Oceanogr., 38, 11221130.

    • Search Google Scholar
    • Export Citation
  • Bühler, O., and T. Jacobson, 2001: Wave-driven currents and vortex dynamics on barred beaches. J. Fluid Mech., 449, 313339.

  • Chang, M.-S., 1969: Mass transport in deep-water long-crested random-gravity waves. J. Geophys. Res., 6, 15151536.

  • Craik, A. D. D., 1985: Wave Interactions and Fluid Flows. Cambridge Universtiy Press, 322 pp.

  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426.

  • de Szoeke, R. A., and A. F. Bennett, 1993: Microstructure fluxes across density surfaces. J. Phys. Oceanogr., 23, 22542264.

  • Dingemans, M. W., 2009: Some reflection on the generalized Lagrangian mean. Nonlinear Wave Dynamics, World Scientific Publishing, 1–30.

  • Donelan, M. A., M. Curcic, S. S. Chen, and A. K. Magnusson, 2012: Modeling waves and wind stress. J. Geophys. Res., 117, C00J23, doi:10.1029/2011JC007787.

    • Search Google Scholar
    • Export Citation
  • Drazen, D. A., W. K. Melville, and L. Lenain, 2008: Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech., 611, 307332.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., I. Ginis, and T. Hara, 2010: Momentum flux budget across the air–sea interface under uniform and tropical cyclone winds. J. Phys. Oceanogr., 40, 22212242.

    • Search Google Scholar
    • Export Citation
  • Gallimore, R. G., and D. R. Johnson, 1981: The forcing of the meridional circulation of the isentropic zonally averaged circumpolar vortex. J. Atmos. Sci., 38, 583599.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., 1976: Generation of Langmuir circulations by surface waves—A feedback mechanism. J. Mar. Res., 34, 117130.

  • Greatbatch, R. J., 1998: Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422432.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., and T. J. McDougall, 2003: The non-Boussinesq temporal residual mean. J. Phys. Oceanogr., 33, 12311239.

  • Hasselmann, K., 1970: Wave-driven inertial oscillations. Geophys. Astrophys. Fluid Dyn., 1, 463502.

  • Huang, N. E., 1979: On surface drift currents in the ocean. J. Fluid Mech., 91, 191208.

  • Iwasaki, T., 2001: Atmospheric energy cycle viewed from wave-mean-flow interaction and Lagrangian mean circulation. J. Atmos. Sci., 58, 30363052.

    • Search Google Scholar
    • Export Citation
  • Jacobson, T., and H. Aiki, 2006: An exact energy for TRM theory. J. Phys. Oceanogr., 36, 558564.

  • Jenkins, A. D., 1987: Wind- and wave-induced currents in a rotating sea with depth-varying eddy viscosity. J. Phys. Oceanogr., 17, 938951.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A. D., 1989: The use of a wave prediction model for driving a near-surface current model. Dtsch. Hydrogr. Z., 42, 133149.

  • Jenkins, A. D., and F. Ardhuin, 2004: Interaction of ocean waves and currents: How different approaches may be reconciled. Proc. 14th Int. Offshore and Polar Engineering Conf., Toulon, France, International Society of Offshore and Polar Engineers, 105–111.

  • Kukulka, T., A. J. Plueddemann, J. H. Trowbridge, and P. P. Sullivan, 2010: Rapid mixed layer deepening by the combination of Langmuir and shear instabilities: A case study. J. Phys. Oceanogr., 40, 23812400.

    • Search Google Scholar
    • Export Citation
  • Lagrange, J. L., 1788: Méchanique Analitique. La Veuve Desaint, 512 pp.

  • Lamb, H., 1932: Hydrodynamics. 6th ed. Cambridge University Press, 738 pp.

  • Lane, E. M., J. M. Restrepo, and J. C. McWilliams, 2007: Wave–current interaction: A comparison of radiation-stress and vortex-force representations. J. Phys. Oceanogr., 37, 11221141.

    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Leibovich, S., 1980: On wave-current interaction theory of Langmuir circulations. J. Fluid Mech., 99, 715724.

  • Longuet-Higgins, M. S., 1953: Mass transport in water waves. Phil. Trans. Roy. Soc. London, A245, 535581.

  • Longuet-Higgins, M. S., 1960: Mass transport in the boundary layer at a free oscillating surface. J. Fluid Mech., 8, 293306.

  • Longuet-Higgins, M. S., and R. W. Stewart, 1964: Radiation stress in water waves: A physical discussion with applications. Deep-Sea Res., 11, 529562.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and P. C. McIntosh, 2001: The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum equations. J. Phys. Oceanogr., 31, 12221246.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J. C., J. M. Restrepo, and E. M. Lane, 2004: An asymptotic theory for the interaction of waves and currents in coastal waters. J. Fluid Mech., 511, 135178.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., 2003: The three-dimensional current and surface wave equations. J. Phys. Oceanogr., 33, 19781989.

  • Mellor, G., 2008a: The depth-dependent current and wave interaction equations: A revision. J. Phys. Oceanogr., 38, 25872596.

  • Mellor, G., 2008b: Reply. J. Phys. Oceanogr., 38, 13511353.

  • Ng, C.-O., 2004: Mass transport in gravity waves revisited. J. Geophys. Res., 109, C04012, doi:10.1029/2003JC002121.

  • Phillips, O. M., 1977: Dynamics of the Upper Ocean. Cambridge University Press, 336 pp.

  • Piedra-Cueva, I., 1995: Drift velocity of spatially decaying waves in a two-layer viscous system. J. Fluid Mech., 299, 217239.

  • Pierson, W. J., 1962: Perturbation analysis of the Navier–Stokes equations in Lagrangian form with selected linear solutions. J. Geophys. Res., 67, 31513160.

    • Search Google Scholar
    • Export Citation
  • Polton, J. A., and S. E. Belcher, 2007: Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. J. Geophys. Res., 112, C09020, doi:10.1029/2007JC004205.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100 (C5), 85018522.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 2006: Wave–current interactions in finite depth. J. Phys. Oceanogr., 36, 14031419.

  • Stokes, G. G., 1847: On the theory of oscillatory waves. Trans. Cambridge Philos. Soc., 8, 441455.

  • Tamura, H., Y. Miyazawa, and L.-Y. Oey, 2012: The Stokes drift and wave induced-mass flux in the North Pacific. J. Geophys. Res., 117, C08021, doi:10.1029/2012JC008113.

    • Search Google Scholar
    • Export Citation
  • Tang, C. L., W. Perrie, A. D. Jenkins, B. M. DeTracey, Y. Hu, B. Toulany, and P. C. Smith, 2007: Observation and modeling of surface currents on the Grand Banks: A study of the wave effects on surface currents. J. Geophys. Res., 112, C10025, doi:10.1029/2006JC004028.

    • Search Google Scholar
    • Export Citation
  • Tian, Z., M. Perlin, and W. Choi, 2010: Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model. J. Fluid Mech., 655, 217257.

    • Search Google Scholar
    • Export Citation
  • Ünlüata, U., and C. C. Mei, 1970: Mass transport in water waves. J. Geophys. Res., 75, 76117618.

  • Weber, J. E., 1983: Steady wind- and wave-induced currents in the open ocean. J. Phys. Oceanogr., 13, 524530.

  • Weber, J. E., G. Broström, and O. Saetra, 2006: Eulerian versus Lagrangian approaches to the wave-induced transport in the upper ocean. J. Phys. Oceanogr., 36, 21062118.

    • Search Google Scholar
    • Export Citation
  • Xu, Z., and A. J. Bowen, 1994: Wave- and wind-driven flow in water of finite depth. J. Phys. Oceanogr., 24, 18501866.

  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 83 34 2
PDF Downloads 37 14 1

A New Expression for the Form Stress Term in the Vertically Lagrangian Mean Framework for the Effect of Surface Waves on the Upper-Ocean Circulation

View More View Less
  • 1 Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
  • | 2 GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany
Restricted access

Abstract

There is an ongoing discussion in the community concerning the wave-averaged momentum equations in the hybrid vertically Lagrangian and horizontally Eulerian (VL) framework and, in particular, the form stress term (representing the residual effect of pressure perturbations) that is thought to restrict the handling of higher-order waves in terms of a perturbation expansion. The present study shows that the traditional pressure-based form stress term can be transformed into a set of terms that do not contain any pressure quantities but do contain the time derivative of a wave-induced velocity. This wave-induced velocity is referred to as the pseudomomentum in the VL framework, as it is analogous to the generalized pseudomomentum in Andrews and McIntyre. This enables the second expression for the wave-averaged momentum equations in the VL framework (this time for the development of the total transport velocity minus the VL pseudomomentum) to be derived together with the vortex force. The velocity-based expression of the form stress term also contains the residual effect of the turbulent viscosity, which is useful for understanding the dissipation of wave energy leading to a transfer of momentum from waves to circulation. It is found that the concept of the virtual wave stress of Longuet-Higgins is applicable to quite general situations: it does not matter whether there is wind forcing or not, the waves can have slow variations, and the viscosity coefficient can vary in the vertical. These results provide a basis for revisiting the surface boundary condition used in numerical circulation models.

Corresponding author address: Hidenori Aiki, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25, Showamachi, Kanazawaku, Yokohama 236-0001, Japan. E-mail: aiki@jamstec.go.jp

Abstract

There is an ongoing discussion in the community concerning the wave-averaged momentum equations in the hybrid vertically Lagrangian and horizontally Eulerian (VL) framework and, in particular, the form stress term (representing the residual effect of pressure perturbations) that is thought to restrict the handling of higher-order waves in terms of a perturbation expansion. The present study shows that the traditional pressure-based form stress term can be transformed into a set of terms that do not contain any pressure quantities but do contain the time derivative of a wave-induced velocity. This wave-induced velocity is referred to as the pseudomomentum in the VL framework, as it is analogous to the generalized pseudomomentum in Andrews and McIntyre. This enables the second expression for the wave-averaged momentum equations in the VL framework (this time for the development of the total transport velocity minus the VL pseudomomentum) to be derived together with the vortex force. The velocity-based expression of the form stress term also contains the residual effect of the turbulent viscosity, which is useful for understanding the dissipation of wave energy leading to a transfer of momentum from waves to circulation. It is found that the concept of the virtual wave stress of Longuet-Higgins is applicable to quite general situations: it does not matter whether there is wind forcing or not, the waves can have slow variations, and the viscosity coefficient can vary in the vertical. These results provide a basis for revisiting the surface boundary condition used in numerical circulation models.

Corresponding author address: Hidenori Aiki, Research Institute for Global Change, Japan Agency for Marine-Earth Science and Technology, 3173-25, Showamachi, Kanazawaku, Yokohama 236-0001, Japan. E-mail: aiki@jamstec.go.jp
Save