• Agrawal, Y. C., E. A. Terray, and M. Donelan, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220.

    • Search Google Scholar
    • Export Citation
  • Anis, A., and J. N. Moum, 1995: Surface wave–turbulence interactions: Scaling ϵ(z) near the sea surface. J. Phys. Oceanogr., 25, 20252045.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., B. Chapron, and F. Collard, 2009: Observation of swell dissipation across oceans. Geophys. Res. Lett.,36, L06607, doi:10.1029/2008GL037030.

  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., 2011: Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press, 480 pp.

  • Babanin, A. V., and D. Chalikov, 2012: Numerical investigation of turbulence generation in non-breaking potential waves. J. Geophys. Res., 117, C06010, doi:10.1029/2012JC007929.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and B. K. Haus, 2009: On the existence of water turbulence induced by non-breaking surface waves. J. Phys. Oceanogr., 39, 26752679.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., D. Chalikov, I. R. Young, and I. Savelyev, 2010a: Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. J. Fluid Mech., 644, 433463.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., K. N. Tsagareli, I. R. Young, and D. J. Walker, 2010b: Numerical investigation of spectral evolution of wind waves. Part II: Dissipation function and evolution tests. J. Phys. Oceanogr., 40, 667683.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., and D. H. Peregrine, 1993: Wave breaking in deep water. Annu. Rev. Fluid Mech., 25, 373397.

  • Banner, M. L., and W. L. Pierson, 2007: Wave breaking onset and strength for two-dimensional deep water wave groups. J. Fluid Mech., 585, 93115.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., A. V. Babanin, and I. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30, 31453160.

    • Search Google Scholar
    • Export Citation
  • Banner, M. L., J. R. Gemmrich, and D. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32, 33643375.

    • Search Google Scholar
    • Export Citation
  • CERC, 1977: Wave and water level predictions. Shore Protection Manual. 3rd ed. U.S. Army Coastal Engineering Research Center, 175 pp.

  • Chickadel, C. C., R. A. Holman, and M. H. Freilich, 2003: An optical technique for the measurement of longshore currents. J. Geophys. Res., 108, 3364, doi:10.1029/2003JC001774.

    • Search Google Scholar
    • Export Citation
  • Ding, L., and D. Farmer, 1994: Observations of breaking wave statistics. J. Phys. Oceanogr., 24, 13681387.

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep-water fetch laws for wind-generated surface gravity waves. Atmos.–Ocean, 27, 210236.

    • Search Google Scholar
    • Export Citation
  • Donelan, M., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 509562.

    • Search Google Scholar
    • Export Citation
  • Donelan, M., M. Skafel, H. Graber, P. Liu, D. Schwab, and S. Venkatesh, 1992: On the growth rate of wind-generated waves. Atmos.–Ocean, 30, 457478.

    • Search Google Scholar
    • Export Citation
  • Drazen, D., W. K. Melville, and L. Lenain, 2008: Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech., 611, 307332.

    • Search Google Scholar
    • Export Citation
  • Duncan, J. H., 1981: An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. Roy. Soc. London, A377, 331348.

    • Search Google Scholar
    • Export Citation
  • Duncan, J. H., 1983: The breaking and non-breaking wave resistance of a two-dimensional hydrofoil. J. Fluid Mech., 126, 507520.

  • Duncan, J. H., 2001: Spilling breakers. Annu. Rev. Fluid Mech., 33, 519547.

  • Gemmrich, J. R., 2010: Strong turbulence in the wave crest region. J. Phys. Oceanogr., 40, 583595.

  • Gemmrich, J. R., and D. Farmer, 1999: Observations of the scale and occurrence of breaking surface waves. J. Phys. Oceanogr., 29, 25952606.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., and D. Farmer, 2004: Near-surface turbulence in the presence of breaking waves. J. Phys. Oceanogr., 34, 10671086.

  • Gemmrich, J. R., T. Mudge, and V. Polonichko, 1994: On the energy input from wind to surface waves. J. Phys. Oceanogr., 24, 24132417.

    • Search Google Scholar
    • Export Citation
  • Gemmrich, J. R., M. L. Banner, and C. Garrett, 2008: Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr., 38, 12961312.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z., 8 (12), 195.

    • Search Google Scholar
    • Export Citation
  • Herbers, T. H. C., P. F. Jessen, T. T. Janssen, D. B. Colbert, and J. H. MacMahan, 2012: Observing ocean surface waves with GPS-tracked buoys. J. Atmos. Oceanic Technol., 29, 944959.

    • Search Google Scholar
    • Export Citation
  • Holland, K. T., R. A. Holman, T. C. Lippmann, J. Stanley, and N. Plant, 1997: Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Oceanic Eng., 22, 8192.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642.

  • Jessup, A., and K. Phadnis, 2005: Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm. Meas. Sci. Technol., 16, 19611969.

    • Search Google Scholar
    • Export Citation
  • Jessup, A., C. Zappa, and M. Loewen, 1997: Infrared remote sensing of breaking waves. Nature, 385, 5255.

  • Kitaigorodskii, S., 1962: Contribution to an analysis of the spectra of wind-caused wave action. Izv. Akad. Nauk SSSR Geophys., 9, 12211228.

    • Search Google Scholar
    • Export Citation
  • Kitaigorodskii, S., M. Donelan, J. L. Lumley, and E. A. Terray, 1983: Wave–turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 13, 19881999.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., and W. K. Melville, 2011: The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol., 28, 219243.

    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Loewen, M. R., and W. K. Melville, 1991: Microwave backscatter and acoustic radiation from breaking waves. J. Fluid Mech., 224, 601623.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., 1994: Energy dissipation by breaking waves. J. Phys. Oceanogr., 24, 20412049.

  • Melville, W. K., 1996: The role of surface-wave breaking in air–sea interaction. Annu. Rev. Fluid Mech., 28, 279321.

  • Melville, W. K., and P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature, 417, 5863.

  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated ocean waves. J. Fluid Mech., 4, 426434.

  • Phillips, O. M., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 495531.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., F. Posner, and J. Hansen, 2001: High range resolution radar measurements of the speed distribution of breaking events in wind-generated ocean waves: Surface impulse and wave energy dissipation rates. J. Phys. Oceanogr., 31, 450460.

    • Search Google Scholar
    • Export Citation
  • Plant, W. J., 2012: Whitecaps in deep water. Geophys. Res. Lett.,39, L16601, doi:10.1029/2012GL052732.

  • Rapp, R. J., and W. K. Melville, 1990: Laboratory measurements of deep-water breaking waves. Philos. Trans. Roy. Soc. London, A331, 735800.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., A. V. Babanin, and D. W. Wang, 2012: Observation-consistent input and whitecapping dissipation in a model for wind-generated surface waves: Description and simple calculations. J. Atmos. Oceanic Technol., 29, 13291346.

    • Search Google Scholar
    • Export Citation
  • Romero, L., and W. K. Melville, 2010: Airborne observations of fetch-limited waves in the Gulf of Tehuantepec. J. Phys. Oceanogr., 40, 441465.

    • Search Google Scholar
    • Export Citation
  • Romero, L., W. K. Melville, and J. M. Kleiss, 2012: Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr., 42, 14211444.

    • Search Google Scholar
    • Export Citation
  • Smith, P. C., and J. I. Macpherson, 1987: Cross-shore variations of near-surface wind velocity and atmospheric turbulence at the land–sea boundary during CASP. Atmos.–Ocean, 25, 279303.

    • Search Google Scholar
    • Export Citation
  • Stansell, P., and C. MacFarlane, 2002: Experimental investigation of wave breaking criteria based on wave phase speeds. J. Phys. Oceanogr., 32, 12691283.

    • Search Google Scholar
    • Export Citation
  • Sutherland, P., and W. K. Melville, 2013: Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett., 40, 30743079, doi:10.1002/grl.50584.

    • Search Google Scholar
    • Export Citation
  • Terray, E., M. Donelan, Y. Agrawal, W. Drennan, K. Kahma, A. Williams, P. Hwang, and S. Kitaigorodskii, 1996: Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr., 26, 792807.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., 2012: Wave breaking dissipation observed with “swift” drifters. J. Atmos. Oceanic Technol., 29, 18661882.

  • Thomson, J., and A. Jessup, 2009: A Fourier-based method for the distribution of breaking crests from video observations. J. Atmos. Oceanic Technol., 26, 16631671.

    • Search Google Scholar
    • Export Citation
  • Thomson, J., A. Jessup, and J. Gemmrich, 2009: Energy dissipation and the spectral distribution of whitecaps. Geophys. Res. Lett.,36, L11601, doi:10.1029/2009GL038201.

  • Thorpe, S., 1995: Dynamical processes of transfer at the sea surface. Prog. Oceanogr., 35, 315352.

  • Toba, Y., 1973: Local balance in the air–sea boundary process. J. Oceanogr. Soc. Japan, 29, 209220.

  • Wiles, P., T. P. Rippeth, J. Simpson, and P. Hendricks, 2006: A novel technique for measuring the rate of turbulent dissipation in the marine environment. Geophys. Res. Lett.,33, L21608, doi:10.1029/2006GL027050.

  • Yelland, M., P. Taylor, I. Consterdine, and M. Smith, 1994: The use of the inertial dissipation technique for shipboard wind stress determination. J. Atmos. Oceanic Technol., 11, 10931108.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier Ocean Engineering Book Series, Vol. 2, Elsevier, 287 pp.

  • Young, I. R., and A. V. Babanin, 2006: Spectral distribution of energy dissipation of wind-generated waves due to dominant wave breaking. J. Phys. Oceanogr., 36, 376394.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 103 2
PDF Downloads 234 104 2

Wave Breaking Dissipation in a Young Wind Sea

View More View Less
  • 1 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • | 2 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
Restricted access

Abstract

Coupled in situ and remote sensing measurements of young, strongly forced wind waves are applied to assess the role of breaking in an evolving wave field. In situ measurements of turbulent energy dissipation from wave-following Surface Wave Instrument Float with Tracking (SWIFT) drifters and a tethered acoustic Doppler sonar system are consistent with wave evolution and wind input (as estimated using the radiative transfer equation). The Phillips breaking crest distribution Λ(c) is calculated using stabilized shipboard video recordings and the Fourier-based method of Thomson and Jessup, with minor modifications. The resulting Λ(c) are unimodal distributions centered around half of the phase speed of the dominant waves, consistent with several recent studies. Breaking rates from Λ(c) increase with slope, similar to in situ dissipation. However, comparison of the breaking rate estimates from the shipboard video recordings with the SWIFT video recordings show that the breaking rate is likely underestimated in the shipboard video when wave conditions are calmer and breaking crests are small. The breaking strength parameter b is calculated by comparison of the fifth moment of Λ(c) with the measured dissipation rates. Neglecting recordings with inconsistent breaking rates, the resulting b data do not display any clear trends and are in the range of other reported values. The Λ(c) distributions are compared with the Phillips equilibrium range prediction and previous laboratory and field studies, leading to the identification of several inconsistencies.

Corresponding author address: Michael Schwendeman, University of Washington, 1013 NE 40th Street, Box 355640, Seattle, WA 98105-6698. E-mail: mss28@u.washington.edu

Abstract

Coupled in situ and remote sensing measurements of young, strongly forced wind waves are applied to assess the role of breaking in an evolving wave field. In situ measurements of turbulent energy dissipation from wave-following Surface Wave Instrument Float with Tracking (SWIFT) drifters and a tethered acoustic Doppler sonar system are consistent with wave evolution and wind input (as estimated using the radiative transfer equation). The Phillips breaking crest distribution Λ(c) is calculated using stabilized shipboard video recordings and the Fourier-based method of Thomson and Jessup, with minor modifications. The resulting Λ(c) are unimodal distributions centered around half of the phase speed of the dominant waves, consistent with several recent studies. Breaking rates from Λ(c) increase with slope, similar to in situ dissipation. However, comparison of the breaking rate estimates from the shipboard video recordings with the SWIFT video recordings show that the breaking rate is likely underestimated in the shipboard video when wave conditions are calmer and breaking crests are small. The breaking strength parameter b is calculated by comparison of the fifth moment of Λ(c) with the measured dissipation rates. Neglecting recordings with inconsistent breaking rates, the resulting b data do not display any clear trends and are in the range of other reported values. The Λ(c) distributions are compared with the Phillips equilibrium range prediction and previous laboratory and field studies, leading to the identification of several inconsistencies.

Corresponding author address: Michael Schwendeman, University of Washington, 1013 NE 40th Street, Box 355640, Seattle, WA 98105-6698. E-mail: mss28@u.washington.edu
Save