• Aagaard, K., L. K. Coachman, and E. C. Carmack, 1981: On the halocline of the Arctic Ocean. Deep-Sea Res., 28, 529545.

  • Alexandrov, V. Y., T. Martin, J. Kolatschek, H. Eicken, M. Kreyscher, and A. P. Makshtas, 2000: Sea ice circulation in the Laptev Sea and ice export to the Arctic Ocean: Results from satellite remote sensing and numerical modeling. J. Geophys. Res., 105 (C7), 17 14317 159.

    • Search Google Scholar
    • Export Citation
  • Bareiss, J., and K. Görgen, 2005: Spatial and temporal variability of sea ice in the Laptev Sea: Analyses and review of satellite passive-microwave data and model results, 1979 to 2002. Global Planet. Change, 48, 2854.

    • Search Google Scholar
    • Export Citation
  • Bauch, D., I. A. Dmitrenko, S. A. Kirillov, C. Wegner, J. Hölemann, S. Pivovarov, L. A. Timokhov, and H. Kassens, 2009: Eurasian Arctic shelf hydrography: Exchange and residence time of southern Laptev Sea waters. Cont. Shelf Res., 29, 18151820, doi:10.1016/j.csr.2009.06.009.

    • Search Google Scholar
    • Export Citation
  • Burchard, H., and T. P. Rippeth, 2009: Generation of bulk shear spikes in shallow stratified tidal seas. J. Phys. Oceanogr., 39, 969985.

    • Search Google Scholar
    • Export Citation
  • Cavalieri, D., C. Parkinson, P. Gloersen, and H. J. Zwally, 2008: Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, 1998-2011. National Snow and Ice Data Center, Boulder, CO, digital media.

  • Chen, C., G. Gao, J. Qi, A. Proshutinsky, R. C. Beardsley, Z. Kowalik, H. Lin, and G. Cowles, 2009: A new high-resolution unstructured grid finite volume Arctic Ocean model (AO-FVCOM): An application for tidal studies. J. Geophys. Res., 114, C08017, doi:10.1029/2008JC004941.

    • Search Google Scholar
    • Export Citation
  • Danielson, S., and Z. Kowalik, 2005: Tidal currents in the St. Lawrence Island region. J. Geophys. Res., 110, C10004, doi:10.1029/2004JC002463.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and J. H. Morison, 1992: Internal waves and mixing in the Arctic Ocean. Deep-Sea Res., 39, S459S484.

  • Dmitrenko, I. A., and Coauthors, 2010: Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: Evidence from summer-to-winter hydrographic records of 2007–2009. Cont. Shelf Res., 30, 16561664, doi:10.1016/j.csr.2010.06.012.

    • Search Google Scholar
    • Export Citation
  • Dmitrenko, I. A., S. A. Kirillov, E. Bloshkina, and Y.-D. Lenn, 2012: Tide-induced vertical mixing in the Laptev Sea coastal polynya. J. Geophys. Res., 117, C00G14, doi:10.1029/2011JC006966.

    • Search Google Scholar
    • Export Citation
  • Fer, I., 2009: Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmos. Oceanic Sci. Lett., 2, 148152.

    • Search Google Scholar
    • Export Citation
  • Fer, I., R. Skogseth, and F. Geyer, 2010: Internal waves and mixing in the marginal ice zone near the Yermak Plateau. J. Phys. Oceanogr., 40, 16131630.

    • Search Google Scholar
    • Export Citation
  • Foldvik, A., J. H. Middleton, and T. D. Foster, 1990: The tides of the southern Weddell Sea. Deep-Sea Res., 37, 13451362.

  • Furevik, T., and A. Foldvik, 1996: Stability at M2 critical latitude in the Barents Sea. J. Geophys. Res., 101 (C4), 88238837.

  • Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res., 19, 833846.

    • Search Google Scholar
    • Export Citation
  • Guay, C. K. H., K. K. Falkner, R. D. Muench, M. Mensch, M. Frank, and R. Bayer, 2001: Wind-driven transport pathways for Eurasian Arctic river discharge. J. Geophys. Res., 106 (C6), 11 46911 480.

    • Search Google Scholar
    • Export Citation
  • Hölemann, J. A., S. Kirillov, T. Klagge, A. Novikhin, H. Kassens, and L. Timokhov, 2011: Near-bottom water warming in the Laptev Sea in response to atmospheric and sea-ice conditions in 2007. Polar Res., 30, 6425, doi:10.3402/polar.v30i0.6425.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., J. Finnis, and M. C. Serreze, 2006: Simulated Arctic Ocean freshwater budgets in the twentieth and twenty-first centuries. J. Climate, 19, 62216242.

    • Search Google Scholar
    • Export Citation
  • Howard, S. L., J. Hyatt, and L. Padman, 2004: Mixing in the pycnocline over the western Antarctic Peninsula shelf during Southern Ocean GLOBEC. Deep-Sea Res. II, 51, 19651979, doi:10.1016/j.dsr2.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Jakobsson, M., R. Macnab, L. Mayer, R. Anderson, M. Edwards, J. Hatzky, H. W. Schenke, and P. Johnson, 2008: An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophys. Res. Lett., 35, L07602, doi:10.1029/2008gl033520.

    • Search Google Scholar
    • Export Citation
  • Janout, M. A., J. Hölemann, and T. Krumpen, 2013: Cross-shelf transport of warm and saline water in response to sea ice drift on the Laptev Sea shelf. J. Geophys. Res., 118, 563576, doi:10.1029/2011JC007731.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

  • Kistler, R., and Coauthors, 1999: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267.

    • Search Google Scholar
    • Export Citation
  • Kowalik, Z., and A. Yu. Proshutinsky, 1993: Diurnal tides in the Arctic Ocean. J. Geophys. Res., 98 (C9), 16 44916 468.

  • Kowalik, Z., and A. Yu. Proshutinsky, 1994: The Arctic Ocean tides. The Polar Oceans and Their Role in Shaping the Global Environment, Geophys. Monogr., Vol. 85, Amer. Geophys. Union, 137–158, doi:10.1029/GM085p0137.

  • Krumpen T., M. Janout, K. I . Hodges, R. Gerdes, F. Girard-Ardhuin, J. A. Hölemann, and S. Willmes, 2013: Variability and trends in Laptev Sea ice outflow between 1992–2011. Cryosphere, 7, 349363.

    • Search Google Scholar
    • Export Citation
  • Kulikov, E. A., A. B. Rabinovich, and E. C. Carmack, 2004: Barotropic and baroclinic tidal currents on the Mackenzie shelf break in the southeastern Beaufort Sea. J. Geophys. Res., 109, C05020, doi:10.1029/2003JC001986.

    • Search Google Scholar
    • Export Citation
  • Kwok, R., G. F. Cunningham, and W. D. Hibler III, 2003: Sub-daily ice motion and deformation from RADARSAT observations. Geophys. Res. Lett., 30, 2218, doi:10.1029/2003GL018723.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., and Coauthors, 2009: Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Res. Lett., 36, L05061, doi:10.1029/2008GL036792.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., T. P. Rippeth, C. P. Old, S. Bacon, I. Polyakov, V. Ivanov, and J. Hölemann, 2011: Intermittent intense turbulent mixing under ice in the Laptev Sea continental shelf. J. Phys. Oceanogr., 41, 531547.

    • Search Google Scholar
    • Export Citation
  • Makinson, K., M. Schröder, and S. Østerhus, 2006: Effect of critical latitude and seasonal stratification on tidal current profiles along Ronne Ice Front, Antarctica. J. Geophys. Res., 111, C03022, doi:10.1029/2005JC003062.

    • Search Google Scholar
    • Export Citation
  • Nøst, E., 1994: Calculating tidal current profiles from vertically integrated models near the critical latitude in the Barents Sea. J. Geophys. Res., 99 (C4), 78857901.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., J. A. Francis, E. Hanna, and M. Wang, 2012: The recent shift in early summer Arctic atmospheric circulation. Geophys. Res. Lett., 39, L19804, doi:10.1029/2012GL053268.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. M. Dillon, 1991: Turbulent mixing near the Yermak Plateau during the Coordinated Eastern Arctic Experiment. J. Geophys. Res., 96 (C3), 47694782.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and C. Kottmeier, 2000: High-frequency ice motion and divergence in the Weddell Sea. J. Geophys. Res., 105 (C2), 33793400.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and S. Erofeeva, 2004: A barotropic inverse tidal model for the Arctic Ocean. Geophys. Res. Lett., 31, L02303, doi:10.1029/2003GL019003.

    • Search Google Scholar
    • Export Citation
  • Pawlowicz, R., B. Beardsley, and S. Lentz, 2002: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput. Geosci., 28, 929937.

    • Search Google Scholar
    • Export Citation
  • Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vörösmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf, 2002: Increasing river discharge to the Arctic Ocean. Science, 298, 21712173.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. Pnyushkov, R. Rember, V. V. Ivanov, Y.-D. Lenn, L. Padman, and E. C. Carmack, 2012: Mooring-based observations of the double-diffusive staircases over the Laptev Sea slope. J. Phys. Oceanogr., 42, 95109.

    • Search Google Scholar
    • Export Citation
  • Prandle, D., 1982: The vertical structure of tidal currents and other oscillatory flows. Cont. Shelf Res., 1, 191207.

  • Rainville, L., and P. Winsor, 2008: Mixing across the Arctic Ocean: Microstructure observations during the Beringia 2005 expedition. Geophys. Res. Lett., 35, L08606, doi:10.1029/2008GL033532.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. A. Woodgate, 2009: Observations of internal wave generation in the seasonally ice-free Arctic. Geophys. Res. Lett., 36, L23604, doi:10.1029/2009GL041291.

    • Search Google Scholar
    • Export Citation
  • Robertson, R., 2001: Internal tides and baroclinicity in the southern Weddell Sea: 2. Effects of the critical latitude and stratification. J. Geophys. Res., 106 (C11), 27 01727 034.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., G. Björk, R. Muench, and U. Schauer, 1999: Double-diffusive layering in the Eurasian Basin of the Arctic Ocean. J. Mar. Syst., 21, 327.

    • Search Google Scholar
    • Export Citation
  • Shpaikher, O., Z. P. Fedorova, and Z. S. Yankina, 1972: Interannual variability of hydrological regime of the Siberian shelf seas in response to atmospheric processes (in Russian). Proc. Arct. Antarct. Res. Inst., 306, 517.

    • Search Google Scholar
    • Export Citation
  • Souza, A. J., and J. H. Simpson, 1996: Interaction between mean water column stability and tidal shear in the production of semi-diurnal switching of stratification in the Rhine ROFI. Buoyancy Effects on Coastal and Estuarine Dynamics, D. G. Aubrey and C. T. Friedrichs, Eds., Coastal Estuarine Studies, Vol. 53, Amer. Geophys. Union, 83–96.

  • Stedmon, C. A., R. M. W. Amon, A. J. Rinehart, and S. A. Walker, 2011: The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Mar. Chem., 124, 108118.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. C. Serreze, S. Drobot, S. Gearhead, M. M. Holland, J. Maslanik, W. Meier, and T. Scambos, 2008: Arctic sea ice plummets in 2007. Eos, Trans. Amer. Geophys. Union, 89, 1314, doi:10.1029/2008EO020001.

    • Search Google Scholar
    • Export Citation
  • Sundfjord, A., I. Fer, Y. Kasajima, and H. Svendsen, 2007: Observations of turbulent mixing and hydrography in the marginal ice zone of the Barents Sea. J. Geophys. Res., 112, C05008, doi:10.1029/2006JC003524.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008: Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2000: Properties of vertical current shear across stratification in the North Sea. J. Mar. Res., 58, 465491.

  • Visser, A. W., A. J. Souza, K. Hessner, and J. H. Simpson, 1994: The effect of stratification on tidal current profiles in the region of freshwater influence. Oceanol. Acta, 17, 369381.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V., N. Stashchuk, K. Hutter, and K. Sabinin, 2003: Nonlinear internal waves of tidal periods at critical latitudes. Deep-Sea Res. I, 50, 317338.

    • Search Google Scholar
    • Export Citation
  • Wegner, C., and Coauthors, 2013: Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer. Biogeosciences, 10, 11171129, doi:10.5194/bg-10-1117-2013.

    • Search Google Scholar
    • Export Citation
  • Wu, B., J. Wang, and J. E. Walsh, 2006: Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion. J. Climate, 19, 210225.

    • Search Google Scholar
    • Export Citation
  • Zakharov, V. F., 1966: The role of flaw leads off the edge of fast ice in the hydrological and ice regime of the Laptev Sea. Oceanology, 6, 815821.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 206 88 4
PDF Downloads 136 56 4

Semidiurnal Tides on the Laptev Sea Shelf with Implications for Shear and Vertical Mixing

View More View Less
  • 1 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
  • | 2 School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
Restricted access

Abstract

The Arctic continental shelf seas hold a globally significant source of freshwater that impacts Arctic Ocean stratification, circulation, and climate. This freshwater can be injected below the surface mixed layer by intense turbulent kinetic energy dissipation events, as resolved by Laptev Sea microstructure observations. The tides provide a major source of energy that can be dissipated and hence drive diapycnal mixing in the Laptev Sea. Multiyear ADCP mooring records from locations across the shelf reveal that semidiurnal tides are dominated by the M2 and S2 constituents, with the largest amplitudes on the outer shelf. Throughout most of the shelf, tides are clockwise polarized and sheared by stratification, as characteristic near the M2 critical latitude. Interannual variations of the tidal and shear structures on the inner shelf are mainly determined by the stratification-setting Lena River freshwater plume. In all locations, M2 tides are enhanced under sea ice, and therefore changes in the seasonal ice cover may lead to changes in tides and water column structure. The main conclusions of this study are that (i) tides play a comparatively greater role year-round on the outer shelf relative to the inner shelf; (ii) a sea ice reduction will overall decrease the predictability of the currents, especially on the inner shelf; and (iii) the freshwater distribution directly impacts diapycnal mixing by setting the vertical tidal structure. These combined effects imply that future sea ice loss will increase the variability and vertical mixing of freshwater, particularly on the inner shelf, where the Lena River first enters the Laptev Sea.

Corresponding author address: Markus Janout, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany. E-mail: markus.janout@awi.de

Abstract

The Arctic continental shelf seas hold a globally significant source of freshwater that impacts Arctic Ocean stratification, circulation, and climate. This freshwater can be injected below the surface mixed layer by intense turbulent kinetic energy dissipation events, as resolved by Laptev Sea microstructure observations. The tides provide a major source of energy that can be dissipated and hence drive diapycnal mixing in the Laptev Sea. Multiyear ADCP mooring records from locations across the shelf reveal that semidiurnal tides are dominated by the M2 and S2 constituents, with the largest amplitudes on the outer shelf. Throughout most of the shelf, tides are clockwise polarized and sheared by stratification, as characteristic near the M2 critical latitude. Interannual variations of the tidal and shear structures on the inner shelf are mainly determined by the stratification-setting Lena River freshwater plume. In all locations, M2 tides are enhanced under sea ice, and therefore changes in the seasonal ice cover may lead to changes in tides and water column structure. The main conclusions of this study are that (i) tides play a comparatively greater role year-round on the outer shelf relative to the inner shelf; (ii) a sea ice reduction will overall decrease the predictability of the currents, especially on the inner shelf; and (iii) the freshwater distribution directly impacts diapycnal mixing by setting the vertical tidal structure. These combined effects imply that future sea ice loss will increase the variability and vertical mixing of freshwater, particularly on the inner shelf, where the Lena River first enters the Laptev Sea.

Corresponding author address: Markus Janout, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany. E-mail: markus.janout@awi.de
Save