• Alford, M. H., 2008: Observations of parametric subharmonic instability of the diurnal internal tide in the South China Sea. Geophys. Res. Lett., 35, L15602, doi:10.1029/2008GL034720.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Z. Zhao, 2007: Global patterns of low-mode internal-wave propagation. Part I: Energy and energy flux. J. Phys. Oceanogr., 37, 18291848.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222.

    • Search Google Scholar
    • Export Citation
  • Althaus, A., E. Kunze, and T. Sanford, 2003: Internal tide radiation from Mendocino Escarpment. J. Phys. Oceanogr., 33, 15101527.

  • Arbic, B., A. Wallcraft, and E. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187.

    • Search Google Scholar
    • Export Citation
  • Aucan, J., M. A. Merrifield, D. S. Luther, and P. Flament, 2006: Tidal mixing events on the deep flanks of Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 12021219.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., and T. Peacock, 2009: Tidal conversion by supercritical topography. J. Phys. Oceanogr., 39, 19651974.

  • Balmforth, N. J., G. Ierley, and W. Young, 2002: Tidal conversion by subcritical topography. J. Phys. Oceanogr., 32, 29002914.

  • Bell, T., 1975: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320327.

  • Buehler, O., and M. Holmes-Cerfon, 2011: Decay of an internal tide due to random topography in the ocean. J. Fluid Mech., 678, 271293.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M., S. Legg, and J. Klymak, 2012: Double ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356.

    • Search Google Scholar
    • Export Citation
  • Cacchione, D., and C. Wunsch, 1974: Experimental study of internal waves over a slope. J. Fluid Mech., 66, 223239.

  • Carter, G., and M. Gregg, 2006: Persistent near-diurnal internal waves observed above a site of M2 barotropic-to-baroclinic conversion. J. Phys. Oceanogr., 36, 11361147.

    • Search Google Scholar
    • Export Citation
  • Carter, G., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and M. Hendershott, 1981: Scattering of internal waves obliquely incident upon a step change in bottom slope. Deep-Sea Res., 28A, 13231338.

    • Search Google Scholar
    • Export Citation
  • Egbert, G., and R. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775778.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C., 1982: Observations of internal wave reflection off sloping bottoms. J. Geophys. Res., 87 (C1), 525–538.

  • Eriksen, C., 1985: Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys. Oceanogr., 15, 11451156.

  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 5787.

  • Gayen, B., and S. Sarkar, 2011: Direct and large-eddy simulations of internal tide generation at a near-critical slope. J. Fluid Mech., 681, 4879.

    • Search Google Scholar
    • Export Citation
  • Grisouard, N., C. Staquet, and T. Gerkema, 2011: Generation of internal solitary waves in a pycnocline by an internal wave beam: A numerical study. J. Fluid Mech., 676, 491513.

    • Search Google Scholar
    • Export Citation
  • Hall, R., J. Huthnance, and R. Williams, 2013: Internal wave reflection on shelf-slopes with depth-varying stratification. J. Phys. Oceanogr., 43, 243258.

    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., and M. Merrifield, 1999: Internal tide generation by seamounts, ridges, and islands. J. Geophys. Res., 104, 25 93725 951.

    • Search Google Scholar
    • Export Citation
  • Ivey, G., and R. Nokes, 1989: Vertical mixing due to the breaking of critical internal waves on sloping boundaries. J. Fluid Mech., 204, 479500.

    • Search Google Scholar
    • Export Citation
  • Ivey, G., K. Winters, and I. de Silva, 2000: Turbulent mixing in a sloping benthic boundary layer energized by internal waves. J. Fluid Mech., 418, 5976.

    • Search Google Scholar
    • Export Citation
  • Johnston, T., and M. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res., 108, 3180, doi:10.1029/2002JC001528.

    • Search Google Scholar
    • Export Citation
  • Johnston, T., M. Merrifield, and P. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res., 108, 3365, doi:10.1029/2003JC001844.

    • Search Google Scholar
    • Export Citation
  • Johnston, T., D. Rudnick, and G. Carter, 2011: Internal tidal beams and mixing near Monterey Bay. J. Geophys. Res., 116, C03017, doi:10.1029/2010JC006592.

    • Search Google Scholar
    • Export Citation
  • Kelly, S., and J. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kelly, S., J. Nash, K. Martini, M. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 12171232.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2003: Generation of internal tides in an ocean of finite depth: Analytical and numerical calculations. Deep-Sea Res., 50, 321.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and S. Legg, 2010: A simple mixing scheme for models that resolve breaking internal waves. Ocean Modell., 33, 224–234, doi:10.1016/j.ocemod.2010.02.005.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., R. Pinkel, and L. N. Rainville, 2008: Direct breaking of the internal tide near topography: Kaena Ridge, Hawaii. J. Phys. Oceanogr., 38, 380399.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., M. Buijsman, S. Legg, and R. Pinkel, 2013: Parameterizing baroclinic internal tide scattering and breaking on supercritical topography: The one- and two-ridge cases. J. Phys. Oceanogr., 43, 13801397.

    • Search Google Scholar
    • Export Citation
  • Lee, C., E. Kunze, and T. Sanford, 2006: Internal tides and turbulence along the 3000-m isobath of the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11651183.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and A. Adcroft, 2003: Internal wave breaking at concave and convex continental slopes. J. Phys. Oceanogr., 33, 22242246.

  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 19491964.

    • Search Google Scholar
    • Export Citation
  • Levine, M. D., and T. J. Boyd, 2006: Tidally-forced internal waves and overturns observed on a slope: Results from the HOME survey component. J. Phys. Oceanogr., 36, 11841201.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S., and W. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 15541566.

  • Llewellyn Smith, S., and W. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495, 175191.

  • MacKinnon, J. A., and M. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., and K. Winters, 2005: Subtropical catastrophe: Significant loss of low-mode tidal energy at 28.9°. Geophys. Res. Lett., 32, L15605, doi:10.1029/2005GL023376.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. Alford, and R. Pinkel, 2013a: The latitudinal dependence of shear and mixing in the Pacific transiting the critical latitude for PSI. J. Phys. Oceanogr., 43, 316.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J. A., M. Alford, and O. Sun, 2013b: Parametric subharmonic instability of the internal tide at 29°N. J. Phys. Oceanogr., 43, 1728.

    • Search Google Scholar
    • Export Citation
  • Martini, K., M. Alford, E. Kunze, S. Kelly, and J. Nash, 2011: Observations of internal tides on the Oregon continental slope. J. Phys. Oceanogr., 41, 17721794.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M., and P. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107 (C8), doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Muller, P., and X. Liu, 2000: Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies. J. Phys. Oceanogr., 30, 532549.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res., 45, 19772010.

  • Nash, J., E. Kunze, J. Toole, and R. Schmitt, 2004: Internal tide reflection and turbulent mixing on the continental slope. J. Phys. Oceanogr., 34, 11171134.

    • Search Google Scholar
    • Export Citation
  • Nash, J., E. Kunze, C. Lee, and T. Sanford, 2006: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 11231135.

    • Search Google Scholar
    • Export Citation
  • Nash, J., M. Alford, E. Kunze, K. Martini, and S. Kelley, 2007: Hotspots of deep ocean mixing on the Oregon continental slope. Geophys. Res. Lett., 34, L01605, doi:10.1029/2006GL028170.

    • Search Google Scholar
    • Export Citation
  • Nash, J., S. Kelley, E. Shroyer, J. Moum, and T. F. Duda, 2012: The unpredictable nature of internal tides on continental slopes. J. Phys. Oceanogr., 42, 19812000.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., and S. Legg, 2011: A mechanism for local dissipation of internal tides generated at rough topography. J. Phys. Oceanogr., 41, 378395.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Phillips, O., 1966. The Dynamics of the Upper Ocean. Cambridge University Press, 344 pp.

  • Ray, R., and G. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 21012104.

  • Rudnick, D., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357.

  • Shroyer, E., J. Moum, and J. Nash, 2011: Nonlinear internal waves over New Jersey’s continental shelf. J. Geophys. Res., 116, C03022, doi:10.1029/2010JC006332.

    • Search Google Scholar
    • Export Citation
  • Simmons, H., 2008: Spectral modification and geographic redistribution of the semi-diurnal internal tide. Ocean Modell., 21, 126138.

  • Slinn, D., and J. Riley, 1996: Turbulent mixing in the oceanic boundary layer caused by internal wave reflection from sloping terrain. Dyn. Atmos. Oceans, 24, 5162.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899.

  • St. Laurent, L., and J. D. Nash, 2004: An examination of the radiative and dissipative properties of deep ocean internal tides. Deep-Sea Res., 51, 30292042.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L., S. Stringer, C. Garrett, and D. Perrault-Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res., 50, 9871003.

    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S., and O. Fringer, 2006: Numerical simulations of the interaction of internal waves with a shelf break. Phys. Fluids, 18, 076603.

    • Search Google Scholar
    • Export Citation
  • Venayagamoorthy, S., and O. Fringer, 2007: On the formation and propagation of nonlinear internal boluses across a shelf break. J. Fluid Mech., 577, 137159.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 1969: Progressive internal waves on slopes. J. Fluid Mech., 35, 131145.

  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281314.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., M. Alford, and J. MacKinnon, 2010: Long-range propagation of the semi-diurnal internal tide from the Hawaiian Ridge. J. Phys. Oceanogr., 40, 713736.

    • Search Google Scholar
    • Export Citation
  • Zikanov, O., and D. Slinn, 2001: Along-slope current generation by obliquely incident internal waves. J. Fluid Mech., 445, 235261.

  • Zilberman, N., M. Merrifield, G. Carter, D. Luther, M. Levine, and T. Boyd, 2011: Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 20212036.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 672 336 18
PDF Downloads 276 117 5

Scattering of Low-Mode Internal Waves at Finite Isolated Topography

View More View Less
  • 1 Program in Atmosphere and Ocean Sciences, Princeton University, Princeton, New Jersey
Restricted access

Abstract

A series of two-dimensional numerical simulations examine the breaking of first-mode internal waves at isolated ridges, independently varying the relative height of the topography compared to the depth of the ocean h0/H0; the relative steepness of the topographic slope compared to the slope of the internal wave group velocity γ; and the Froude number of the incoming internal wave Fr0. The fraction of the incoming wave energy, which is reflected back toward deep water, transmitted beyond the ridge, and lost to dissipation and mixing, is diagnosed from the simulations. For critical slopes, with γ = 1, the fraction of incoming energy lost at the slope scales approximately like h0/H0, independent of the incoming wave Froude number. For subcritical slopes, with γ < 1, waves break and lose a substantial proportion of their energy if the maximum Froude number, estimated as Frmax = Fr0/(1 − h0/H0)2, exceeds a critical value, found empirically to be about 0.3. The dissipation at subcritical slopes therefore increases as both incoming wave Froude number and topographic height increase. At critical slopes, the dissipation is enhanced along the slope facing the incoming wave. In contrast, at subcritical slopes, dissipation is small until the wave amplitude is sufficiently enhanced by the shoaling topography to exceed the critical Froude number; then large dissipation extends all the way to the surface. The results are shown to generalize to variable stratification and different topographies, including axisymmetric seamounts. The regimes for low-mode internal wave breaking at isolated critical and subcritical topography identified by these simulations provide guidance for the parameterization of the mixing due to radiated internal tides.

Corresponding author address: Sonya Legg, Program in Atmosphere and Ocean Sciences, Princeton University, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08540. E-mail: sonya.legg@noaa.gov

Abstract

A series of two-dimensional numerical simulations examine the breaking of first-mode internal waves at isolated ridges, independently varying the relative height of the topography compared to the depth of the ocean h0/H0; the relative steepness of the topographic slope compared to the slope of the internal wave group velocity γ; and the Froude number of the incoming internal wave Fr0. The fraction of the incoming wave energy, which is reflected back toward deep water, transmitted beyond the ridge, and lost to dissipation and mixing, is diagnosed from the simulations. For critical slopes, with γ = 1, the fraction of incoming energy lost at the slope scales approximately like h0/H0, independent of the incoming wave Froude number. For subcritical slopes, with γ < 1, waves break and lose a substantial proportion of their energy if the maximum Froude number, estimated as Frmax = Fr0/(1 − h0/H0)2, exceeds a critical value, found empirically to be about 0.3. The dissipation at subcritical slopes therefore increases as both incoming wave Froude number and topographic height increase. At critical slopes, the dissipation is enhanced along the slope facing the incoming wave. In contrast, at subcritical slopes, dissipation is small until the wave amplitude is sufficiently enhanced by the shoaling topography to exceed the critical Froude number; then large dissipation extends all the way to the surface. The results are shown to generalize to variable stratification and different topographies, including axisymmetric seamounts. The regimes for low-mode internal wave breaking at isolated critical and subcritical topography identified by these simulations provide guidance for the parameterization of the mixing due to radiated internal tides.

Corresponding author address: Sonya Legg, Program in Atmosphere and Ocean Sciences, Princeton University, 300 Forrestal Road, Sayre Hall, Princeton, NJ 08540. E-mail: sonya.legg@noaa.gov
Save