• Bane, J. M., Jr., D. A. Brooks, and K. R. Lorenson, 1981: Synoptic observations of the three-dimensional structure and propagation of Gulf Stream meanders along the Carolina continental margin. J. Geophys. Res., 86, 64116425.

    • Search Google Scholar
    • Export Citation
  • Borkman, D. G., and T. J. Smayda, 2009: Gulf Stream position and winter NAO as drivers of long-term variations in the bloom phenology of the diatom Skeletonema costatum “species-complex” in Narragansett Bay, RI, USA. J. Plankton Res., 31, 14071425, doi:10.1093/plankt/fbp072.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., 1989: Potential vorticity balances and horizontal divergence along particle trajectories in Gulf Stream meanders east of Cape Hatteras. J. Phys. Oceanogr., 19, 16691681.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and N. Hogg, 1992: Evidence for barotropic wave radiation from the Gulf Stream. J. Phys. Oceanogr., 22, 4261.

  • Bryan, F. O., M. W. Hecht, and R. D. Smith, 2007: Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The western boundary current system. Ocean Modell., 16, 141159, doi:10.1016/j.ocemod.2006.08.005.

    • Search Google Scholar
    • Export Citation
  • De Coëtlogon, G., C. Frankignoul, M. Bentsen, C. Delon, H. Haak, S. Masina, and A. Pardaens, 2006: Gulf Stream variability in five oceanic general circulation models. J. Phys. Oceanogr., 36, 21192135.

    • Search Google Scholar
    • Export Citation
  • Dewar, W., and J. Bane, 1985: Gulf Stream dynamics. Part II: Eddy energetics at 73°W. J. Phys. Oceanogr., 19, 1574–1588.

  • Dibarboure, G., O. Lauret, and F. Mertz, 2008: SSALTO/DUACS user handbook: (M) SLA and (M) ADT near-real time and delayed time products. AVISO Rep. CLS-DOS-NT 6, 39 pp.

  • Frankignoul, C., G. de Coetlogon, T. Joyce, and S. Dong, 2001: Gulf Stream variability and ocean–atmosphere interactions. J. Phys. Oceanogr., 31, 35163529.

    • Search Google Scholar
    • Export Citation
  • Fuglister, F. C., 1955: Alternative analyses of current surveys. Deep-Sea Res., 2, 213229, doi:10.1016/0146-6313(55)90026-5.

  • Fuglister, F. C., 1963: Gulf Stream '60. Prog. Oceanogr., 1, 265–373.

  • Fuglister, F. C., and L. Worthington, 1951: Some results of a multiple ship survey of the Gulf Stream. Tellus, 3, 114.

  • Gangopadhyay, A., P. Cornillon, and D. R. Watts, 1992: A test of the Parsons–Veronis hypothesis on the separation of the Gulf Stream. J. Phys. Oceanogr., 22, 12861286.

    • Search Google Scholar
    • Export Citation
  • Hameed, S., 2004: The dominant influence of the Icelandic Low on the position of the Gulf Stream northwall. Geophys. Res. Lett., 31, L09303, doi:10.1029/2004GL019561.

    • Search Google Scholar
    • Export Citation
  • Hernández-Guerra, A., and L. Nykjaer, 1997: Sea surface temperature variability off northwest Africa: 1981–1989. Int. J. Remote Sens., 18, 25392558, doi:10.1080/014311697217468.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., and R. Zhang, 2010: On the path of the Gulf Stream and the Atlantic meridional overturning circulation. J. Climate, 23, 31463154.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., C. Deser, and M. Spall, 2000: The relation between decadal variability of subtropical mode water and the North Atlantic Oscillation. J. Climate, 13, 25502569.

    • Search Google Scholar
    • Export Citation
  • Joyce, T. M., Y.-O. Kwon, and L. Yu, 2009: On the relationship between synoptic wintertime atmospheric variability and path shifts in the Gulf Stream and the Kuroshio Extension. J. Climate, 22, 31773192.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., and S. Gille, 1990: Gulf Stream surface transport and statistics at 69°W. J. Geophys. Res., 95, 31493161.

  • Kwon, Y.-O., M. A. Alexander, N. A. Bond, C. Frankignoul, H. Nakamura, B. Qiu, and L. A. Thompson, 2010: Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: A review. J. Climate, 23, 32493281.

    • Search Google Scholar
    • Export Citation
  • Lee, T., 1994: Variability of the Gulf Stream path observed from satellite infrared images. Ph.D. dissertation, Graduate School of Oceanography, University of Rhode Island, 188 pp.

  • Lee, T., and P. Cornillon, 1995: Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream. J. Geophys. Res., 100, 13 60313 613.

    • Search Google Scholar
    • Export Citation
  • Lillibridge, J. L., and A. J. Mariano, 2012: A statistical analysis of Gulf Stream variability from 18+ years of altimetry data. Deep-Sea Res. II, 85,120, doi:10.1016/j.dsr2.2012.07.034.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 13991421.

    • Search Google Scholar
    • Export Citation
  • McCarthy, G. and Coauthors, 2012: Observed interannual variability of the Atlantic meridional overturning circulation at 26.5°N. Geophys. Res. Lett.,39, L19609, doi:10.1029/2012GL052933.

  • Nakamura, M., and Y. Chao, 2000: Characteristics of three-dimensional quasigeostrophic transient eddy propagation in the vicinity of a simulated Gulf Stream. J. Geophys. Res., 105 (C5), 11385–11406.

    • Search Google Scholar
    • Export Citation
  • Nye, J. A., T. M. Joyce, Y.-O. Kwon, and J. S. Link, 2011: Silver hake tracks changes in northwest Atlantic circulation. Nature Commun., 2, 412416, doi:10.1038/ncomms1420.

    • Search Google Scholar
    • Export Citation
  • Osychny, V., and P. Cornillon, 2004: Properties of Rossby waves in the North Atlantic estimated from satellite data. J. Phys. Oceanogr., 34, 6176.

    • Search Google Scholar
    • Export Citation
  • Overland, J. E., and R. W. Preisendorfer, 1982: A significance test for principal components applied to a cyclone climatology. Mon. Wea. Rev., 110, 14.

    • Search Google Scholar
    • Export Citation
  • Peña-Molino, B., 2010: Variability in the North Atlantic Deep Western Boundary Current: Upstream causes and downstream effects as observed at Line W. Ph.D. thesis, Woods Hole Oceanographic Institution, 174 pp.

  • Peña-Molino, B., and T. M. Joyce, 2008: Variability in the slope water and its relation to the Gulf Stream path. Geophys. Res. Lett., 35, L03606, doi:10.1029/2007GL032183.

    • Search Google Scholar
    • Export Citation
  • Preisendorfer, R. W., and C. D. Mobley, 1988: Principal Component Analysis in Meteorology and Oceanography. Elsevier Science, 444 pp.

  • Rayner, D., and Coauthors, 2011: Monitoring the Atlantic meridional overturning circulation. Deep-Sea Res. II, 58, 17441753, doi:10.1016/j.dsr2.2010.10.056.

    • Search Google Scholar
    • Export Citation
  • Rossby, T., and R. Benway, 2000: Slow variations in mean path of the Gulf Stream east of Cape Hatteras. Geophys. Res. Lett., 27, 117120.

    • Search Google Scholar
    • Export Citation
  • Savidge, D. K., 2004: Gulf Stream meander propagation past Cape Hatteras. J. Phys. Oceanogr., 34, 20732085.

  • Spall, M. A., 1996: Dynamics of the Gulf Stream/Deep western boundary current crossover. Texas A&M University Dept. of Oceanography Part Working Collection 77843, 39522–35001.

  • Taylor, A. H., M. B. Jordan, and J. A. Stephens, 1998: Gulf Stream shifts following ENSO events. Nature, 393, 638638.

  • Thompson, J., and W. Schmitz Jr., 1989: A limited-area model of the Gulf Stream: Design, initial experiments, and model–data intercomparison. J. Phys. Oceanogr., 19, 791814.

    • Search Google Scholar
    • Export Citation
  • Tracey, K., and D. Watts, 1986: On Gulf Stream meander characteristics near Cape Hatteras. J. Geophys. Res., 91, 75877602.

  • Watts, D. R., and W. E. Johns, 1982: Gulf Stream meanders: Observations on propagation and growth. J. Geophys. Res., 87, 94679476.

  • Welch, P., 1967: The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust.,15, 7073.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2006: Impact of great salinity anomalies on the low-frequency variability of the North Atlantic climate. J. Climate, 19, 470482.

    • Search Google Scholar
    • Export Citation
  • Zhang, R., and G. K. Vallis, 2007: The role of bottom vortex stretching on the path of the North Atlantic Western Boundary Current and on the northern recirculation gyre. J. Phys. Oceanogr., 37, 20532080.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 228 89 6
PDF Downloads 135 65 3

Two Modes of Gulf Stream Variability Revealed in the Last Two Decades of Satellite Altimeter Data

View More View Less
  • 1 Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain
  • | 2 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
Restricted access

Abstract

Monthly mapped sea level anomalies (MSLAs) of the NW Atlantic in the region immediately downstream of the Gulf Stream (GS) separation point reveal a leading mode in which the path shifts approximately 100 km meridionally about a nominal latitude of 39°N, producing coherent sea level anomaly (SLA) variability from 72° to 50°W. This mode can be captured by use of a simple 16-point index based on SLA data taken along the maximum of the observed variability in the region 33°–46°N and 45°–75°W. The GS shifts between 2010 and 2012 are the largest of the last decade and equal to the largest of the entire record. The second group of EOF modes of variability describes GS meanders, which propagate mainly westward interrupted by brief periods of eastward or stationary meanders. These meanders have wavelengths of approximately 400 km and can be seen in standard EOFs by spatial phase shifting of a standing meander pattern in the SLA data. The spectral properties of these modes indicate strong variability at interannual and longer periods for the first mode and periods of a few to several months for the meanders. While the former is quite similar to a previous use of the altimeter for GS path, the simple index is a useful measure of the large-scale shifts in the GS path that is quickly estimated and updated without changes in previous estimates. The time-scale separation allows a low-pass filtered 16-point index to be reflective of large-scale, coherent shifts in the GS path.

Corresponding author address: M. D. Pérez-Hernández, Instituto de Oceanografía y Cambio Global, Edificio de Ciencias Básicas, Campus de Tafira, Universidad de Las Palmas de Gran Canaria, Las Palmas, 35017, Spain. E-mail: mdolores.perez@ulpgc.es

Abstract

Monthly mapped sea level anomalies (MSLAs) of the NW Atlantic in the region immediately downstream of the Gulf Stream (GS) separation point reveal a leading mode in which the path shifts approximately 100 km meridionally about a nominal latitude of 39°N, producing coherent sea level anomaly (SLA) variability from 72° to 50°W. This mode can be captured by use of a simple 16-point index based on SLA data taken along the maximum of the observed variability in the region 33°–46°N and 45°–75°W. The GS shifts between 2010 and 2012 are the largest of the last decade and equal to the largest of the entire record. The second group of EOF modes of variability describes GS meanders, which propagate mainly westward interrupted by brief periods of eastward or stationary meanders. These meanders have wavelengths of approximately 400 km and can be seen in standard EOFs by spatial phase shifting of a standing meander pattern in the SLA data. The spectral properties of these modes indicate strong variability at interannual and longer periods for the first mode and periods of a few to several months for the meanders. While the former is quite similar to a previous use of the altimeter for GS path, the simple index is a useful measure of the large-scale shifts in the GS path that is quickly estimated and updated without changes in previous estimates. The time-scale separation allows a low-pass filtered 16-point index to be reflective of large-scale, coherent shifts in the GS path.

Corresponding author address: M. D. Pérez-Hernández, Instituto de Oceanografía y Cambio Global, Edificio de Ciencias Básicas, Campus de Tafira, Universidad de Las Palmas de Gran Canaria, Las Palmas, 35017, Spain. E-mail: mdolores.perez@ulpgc.es
Save