• Alford, M., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 21, 159163.

    • Search Google Scholar
    • Export Citation
  • Battisti, D., and B. Hickey, 1984: Application of remote wind-forced coastal trapped wave theory to the Oregon and Washington coasts. J. Phys. Oceanogr., 14, 887903.

    • Search Google Scholar
    • Export Citation
  • Brink, K., 1991: Coastal-trapped waves and wind-driven currents over the continental-shelf. Annu. Rev. Fluid Mech., 23, 389412.

  • Chapman, D., 1987: Application of wind-forced, long, coastal-trapped wave theory along the California coast. J. Geophys. Res., 92 (C2), 17981816.

    • Search Google Scholar
    • Export Citation
  • Checkley, D., and J. Barth, 2009: Patterns and processes in the California current system. Prog. Oceanogr., 83, 4964.

  • Chenillat, F., P. Rivière, X. Capet, P. Franks, and B. Blanke, 2013: California coastal upwelling onset variability: Cross-shore and bottom-up propagation in the planktonic ecosystem. PLoS ONE, 8,e62281, doi:10.1371/journal.pone.0062281.

    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., C. C. Eriksen, M. D. Levine, P. Niiler, C. A. Paulson, and P. V. Meurs, 1995: Upper ocean inertial currents forced by a strong storm. Part I: Data and comparisons with linear theory. J. Phys. Oceanogr., 25, 29092936.

    • Search Google Scholar
    • Export Citation
  • de Boyer Montégut, C., G. Madec, A. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res.,109, C12003, doi:10.1029/2004JC002378.

  • Fekete, B. M., C. J. Vorosmarty, and W. Grabs, 2002: High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles, 16 (3), doi:10.1029/1999GB001254.

    • Search Google Scholar
    • Export Citation
  • Forget, G., 2010: Mapping ocean observations in a dynamical framework: A 2004–06 ocean atlas. J. Phys. Oceanogr., 40, 12011221.

  • Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Trans. Math. Software, 24, 437474.

  • Gill, A., 1982: Atmosphere–Ocean Dynamics.Academic Press, 662 pp.

  • Huyer, A., 1983: Coastal upwelling in the California Current System. Prog. Oceanogr., 12, 259284.

  • Kemp, A. C., B. P. Horton, J. P. Donnelly, M. E. Mann, M. Vermeer, and S. Rahmstorf, 2011: Climate related sea-level variations over the past two millennia. Proc. Natl. Acad. Sci. USA,108, 11 017–11 022.

  • Kim, S. Y., 2010: Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Cont. Shelf Res., 30, 16391655, doi:10.1016/j.csr.2010.06.011.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., B. D. Cornuelle, and E. J. Terrill, 2009: Anisotropic response of surface currents to the wind in a coastal region. J. Phys. Oceanogr., 39, 15121533.

    • Search Google Scholar
    • Export Citation
  • Kim, S. Y., and Coauthors, 2011: Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. J. Geophys. Res., 116, C03011, doi:10.1029/2010JC006669.

    • Search Google Scholar
    • Export Citation
  • Large, W., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Large, W., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Losch, M., and P. Heimbach, 2007: Adjoint sensitivity of an ocean general circulation model to bottom topography. J. Phys. Oceanogr., 37, 377393.

    • Search Google Scholar
    • Export Citation
  • MacKinnon, J., and M. Gregg, 2005: Near-inertial waves on the New England shelf: The role of evolving stratification, turbulent dissipation, and bottom drag. J. Phys. Oceanogr., 35, 24082424.

    • Search Google Scholar
    • Export Citation
  • MacMynowski, D. G., and E. Tziperman, 2010: Testing and improving ENSO models by process using transfer functions. Geophys. Res. Lett., 37, L19701, doi:10.1029/2010GL044050.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766.

    • Search Google Scholar
    • Export Citation
  • Mazloff, M. R., 2012: On the sensitivity of the Drake Passage transport to air–sea momentum flux. J. Climate, 25, 22792290.

  • Moore, A. M., H. G. Arango, E. Di Lorenzo, A. J. Miller, and B. D. Cornuelle, 2009: An adjoint sensitivity analysis of the southern California Current circulation and ecosystem. J. Phys. Oceanogr., 39, 702720.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 15171520.

  • Powell, B., H. Arango, A. Moore, E. D. Lorenzo, R. Milliff, and D. Foley, 2008: 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS). Ocean Modell., 23, 130145.

    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., and K. Riser, 2003: Remotely forced nearshore upwelling in Southern California. J. Geophys. Res., 108, 3131, doi:10.1029/2002JC001447.

    • Search Google Scholar
    • Export Citation
  • Pringle, J. M. and E. Dever, 2009: Dynamics of wind-driven upwelling and relaxation between Monterey Bay and Point Arena: Local-, regional-, and gyre-scale controls. J. Geophys. Res.,114, C07003, doi:10.1029/2008JC005016.

  • Ryan, H. F., and M. A. Noble, 2006: Alongshore wind forcing of coastal sea level as a function of frequency. J. Phys. Oceanogr., 36, 21732184.

    • Search Google Scholar
    • Export Citation
  • Rykaczewski, R., and D. Checkley, 2008: Influence of ocean winds on the pelagic ecosystem in upwelling regions. Proc. Natl. Acad. Sci. USA, 105, 19651970.

    • Search Google Scholar
    • Export Citation
  • Sasaki, H., and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J. Phys. Oceanogr., 42, 1233–1241.

    • Search Google Scholar
    • Export Citation
  • Shearman, R., 2005: Observations of near-inertial current variability on the New England shelf. J. Geophys. Res., 110, C02012, doi:10.1029/2004JC002341.

    • Search Google Scholar
    • Export Citation
  • Sobarzo, M., R. Shearman, and S. Lentz, 2007: Near-inertial motions over the continental shelf off Concepción, central Chile. Prog. Oceanogr., 75, 348362.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., and Coauthors, 2003: Volume, heat, and freshwater transports of the global ocean circulation 1993–2000, estimated from a general circulation model constrained by World Ocean Circulation Experiment (WOCE) data. J. Geophys. Res., 108, 3007, doi:10.1029/2001JC001115.

    • Search Google Scholar
    • Export Citation
  • Todd, R., D. Rudnick, M. Mazloff, R. Davis, and B. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res.,116, C02026, doi:10.1029/2010JC006536.

  • Todd, R., D. Rudnick, M. Mazloff, B. Cornuelle, and R. Davis, 2012: Thermohaline structure in the California Current System: Observations and modeling of spice variance. J. Geophys. Res., 117, C02008, doi:10.1029/2011JC007589.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., C. Hill, and O. Jahn, 2011: Possible spreadings of buoyant plumes and local coastline sensitivities using flow syntheses from 1992 to 2007. Monitoring and Modeling the Deepwater Horizon Oil Spill: A Record-Breaking Enterprise, Geophys. Monogr., Vol. 195, Amer. Geophys. Union, 245–255.

  • Veneziani, M., C. A. Edwards, and A. M. Moore, 2009: A central California coastal ocean modeling study: 2. Adjoint sensitivities to local and remote forcing mechanisms. J. Geophys. Res., 114, C04020, doi:10.1029/2008JC004775.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., 2006: Discrete Inverse and State Estimation Problems: With Geophysical Fluid Applications. Cambridge University Press, 384 pp.

  • Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197208.

  • Zhang, X., B. Cornuelle, and D. Roemmich, 2011: Adjoint sensitivity of the Niño-3 surface temperature to wind forcing. J. Climate, 24, 44804493.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., B. Cornuelle, and D. Roemmich, 2012: Sensitivity of western boundary transport at the mean north equatorial current bifurcation latitude to wind forcing. J. Phys. Oceanogr., 42, 20562072.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 98 12
PDF Downloads 162 78 10

Wind-Driven Sea Level Variability on the California Coast: An Adjoint Sensitivity Analysis

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • | 2 Division of Ocean Systems Engineering, School of Mechanical, Aerospace and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
Restricted access

Abstract

Effects of atmospheric forcing on coastal sea surface height near Port San Luis, central California, are investigated using a regional state estimate and its adjoint. The physical pathways for the propagation of nonlocal [O(100 km)] wind stress effects are identified through adjoint sensitivity analyses, with a cost function that is localized in space so that the adjoint shows details of the propagation of sensitivities. Transfer functions between wind stress and SSH response are calculated and compared to previous work. It is found that (i) the response to local alongshore wind stress dominates on short time scales of O(1 day); (ii) the effect of nonlocal winds dominates on longer time scales and is carried by coastally trapped waves, as well as inertia–gravity waves for offshore wind stress; and (iii) there are significant seasonal variations in the sensitivity of SSH to wind stress due to changes in stratification. In a more stratified ocean, the damping of sensitivities to local and offshore winds is reduced, allowing for a larger and longer-lasting SSH response to wind stress.

Corresponding author address: Ariane Verdy, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093. E-mail: averdy@ucsd.edu

Abstract

Effects of atmospheric forcing on coastal sea surface height near Port San Luis, central California, are investigated using a regional state estimate and its adjoint. The physical pathways for the propagation of nonlocal [O(100 km)] wind stress effects are identified through adjoint sensitivity analyses, with a cost function that is localized in space so that the adjoint shows details of the propagation of sensitivities. Transfer functions between wind stress and SSH response are calculated and compared to previous work. It is found that (i) the response to local alongshore wind stress dominates on short time scales of O(1 day); (ii) the effect of nonlocal winds dominates on longer time scales and is carried by coastally trapped waves, as well as inertia–gravity waves for offshore wind stress; and (iii) there are significant seasonal variations in the sensitivity of SSH to wind stress due to changes in stratification. In a more stratified ocean, the damping of sensitivities to local and offshore winds is reduced, allowing for a larger and longer-lasting SSH response to wind stress.

Corresponding author address: Ariane Verdy, Scripps Institution of Oceanography, 9500 Gilman Dr., La Jolla, CA 92093. E-mail: averdy@ucsd.edu
Save