• Agrawal, Y. C., E. A. Terray, M. A. Donelan, P. W. Hwang, A. J. Williams III, W. M. Drennan, K. K. Kahmas, and S. A. Kitaigorodskii, 1992: Enhanced dissipation of kinetic energy beneath surface waves. Nature, 359, 219220.

    • Search Google Scholar
    • Export Citation
  • Alves, J. H. G. M., M. L. Banner, and I. R. Young, 2003: Revisiting the Pierson–Moskowitz asymptotic limits for fully developed wind waves. J. Phys. Oceanogr., 33, 13011323.

    • Search Google Scholar
    • Export Citation
  • Cox, S. M., and S. Leibovich, 1993: Langmuir circulation in a surface layer bounded by a strong thermocline. J. Phys. Oceanogr., 23, 13301345.

    • Search Google Scholar
    • Export Citation
  • Craik, A. D. D., and S. Leibovich, 1976: A rational model for Langmuir circulations. J. Fluid Mech., 73, 401426.

  • D’Asaro, E. A., 2001: Turbulent vertical kinetic energy in the ocean mixed layer. J. Phys. Oceanogr., 31, 35303537.

  • Donelan, M. A., J. Hamilton, and W. H. Hui, 1985: Directional spectra of wind-generated waves. Philos. Trans. Roy. Soc. London, A315, 519562.

    • Search Google Scholar
    • Export Citation
  • Faller, A. J., and E. A. Caponi, 1978: Laboratory studies of wind-driven Langmuir circulation. J. Geophys. Res., 83, 36173633.

  • Gargett, A. E., and J. R. Wells, 2007: Langmuir turbulence in shallow water: Part I. Observations. J. Fluid Mech., 576, 2761.

  • Gargett, A. E., J. R. Wells, A. E. Tejada-Martinez, and C. E. Grosch, 2004: Langmuir supercells: A mechanism for sediment resuspension and transport in shallow seas. Science, 306, 19251928.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., A. E. Tejada-Martínez, and C. E. Grosch, 2008: Measuring turbulent large-eddy structures with an ADCP. 1. Vertical velocity variance. J. Mar. Res., 66, 157189.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., A. E. Tejada-Martínez, and C. E. Grosch, 2009: Measuring turbulent large-eddy structures with an ADCP. 2. Horizontal velocity variance. J. Mar. Res., 67, 569595.

    • Search Google Scholar
    • Export Citation
  • Garrett, C. J. R., 1976: Generation of Langmuir circulations by surface waves—A feedback mechanism. J. Mar. Res., 34, 117130.

  • Gnanadesikan, A., 1996: Mixing driven by vertically variable forcing: An application to the case of Langmuir circulation. J. Fluid Mech., 322, 81107.

    • Search Google Scholar
    • Export Citation
  • Goodman, L., 1990: Acoustic scattering from ocean microstructure. J. Geophys. Res., 95 (C7), 11 55711 573.

  • Grant, A. L., and S. E. Belcher, 2009: Characteristics of Langmuir turbulence in the ocean mixed layer. J. Phys. Oceanogr., 39, 18711887.

    • Search Google Scholar
    • Export Citation
  • Harcourt, R. R., and E. A. D’Asaro, 2008: Large-eddy simulation of Langmuir turbulence in pure wind seas. J. Phys. Oceanogr., 38, 15421562.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and F. T. M. Nieuwstadt, 1986: Scaling the atmospheric boundary layer. Bound.-Layer Meteor., 36, 201209.

  • Kenyon, K. E., 1969: Stokes drift for random gravity waves. J. Geophys. Res., 74, 69916994.

  • Kitaigorodskii, S. A., M. A. Donelan, J. L. Lumley, and E. A. Terray, 1983: Wave–turbulence interactions in the upper ocean. Part II: Statistical characteristics of wave and turbulent components of the random velocity field in the marine surface layer. J. Phys. Oceanogr., 13, 19881999.

    • Search Google Scholar
    • Export Citation
  • Langmuir, I., 1938: Surface motion of water induced by wind. Science, 87, 119123.

  • Leibovich, S., 1977: On the evolution of the system of wind drift currents and Langmuir circulations in the ocean. Part 1. Theory and averaged current. J. Fluid Mech., 79, 715743.

    • Search Google Scholar
    • Export Citation
  • Leibovich, S., 1983: The form and dynamics of Langmuir circulations. Annu. Rev. Fluid Mech., 15, 391427.

  • Lenschow, D. H., J. C. Wyngaard, and W. T. Pennell, 1980: Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J. Atmos. Sci., 37, 13131326.

    • Search Google Scholar
    • Export Citation
  • Li, M., and C. Garrett, 1993: Cell merging and the jet/downwelling ratio in Langmuir circulation. J. Mar. Res., 51, 737769.

  • Li, M., C. Garrett, and E. Skyllingstad, 2005: A regime diagram for classifying turbulent eddies in the upper ocean. Deep-Sea Res. I, 52, 259278, doi:10.1016/j.dsr.2004.09.004.

    • Search Google Scholar
    • Export Citation
  • Lumley, J. L., 1978: Computational modeling of turbulent flows. Adv. Appl. Mech., 18, 123176.

  • McWilliams, J. C., and J. Restrepo, 1999: The wave-driven ocean circulation. J. Phys. Oceanogr., 29, 25232540.

  • McWilliams, J. C., P. P. Sullivan, and C.-H. Moeng, 1997: Langmuir turbulence in the ocean. J. Fluid Mech., 334, 130.

  • Min, H. S., and Y. Noh, 2004: Influence of the surface heating on Langmuir circulation. J. Phys. Oceanogr., 34, 26302641.

  • Münchow, A., and R. J. Chant, 2000: Kinematics of inner shelf motions during the summer stratified season off New Jersey. J. Phys. Oceanogr., 30, 247268.

    • Search Google Scholar
    • Export Citation
  • Panofsky, H. A., 1973. Tower micrometeorology. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 151–176.

  • Papavassiliou, D. V., and T. J. Hanratty, 1997: Intertretation of large-scale sturctures observed in turbulent plane Couette flow. Int. J. Heat Fluid Flow, 18, 5569.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1958: The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech., 4, 426434.

  • Phillips, O. M., 1977: The Dynamics of the Upper Ocean. 2nd ed. Cambridge University Press, 336 pp.

  • Pierson, W. J., and L. Moskowitz, 1964: A proposed spectral form for fully-developed wind seas based on the similarity theory of S. A. Kitaigorodskii. J. Geophys. Res., 69, 51815190.

    • Search Google Scholar
    • Export Citation
  • Plueddemann, A. J., J. A. Smith, D. M. Farmer, R. A. Weller, W. R. Crawford, R. Pinkel, and A. Gnanadesikan, 1996: Structure and variability of Langmuir circulation during the Surface Waves Processes Program. J. Geophys. Res., 101, 35253543.

    • Search Google Scholar
    • Export Citation
  • Pollard, R. T., 1976: Observations and theories of Langmuir circulations and their role in ocean mixing. A Voyage of Discovery: George Deacon 70th Anniversary Volume, M. Angel, Ed., Pergamon Press, 235–251.

  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Savidge, W. B., A. Gargett, R. A. Jahnke, J. R. Nelson, D. K. Savidge, R. T. Short, and G. Voulgaris, 2008: Forcing and dynamics of seafloor–water column exchange on a broad continental shelf. Oceanography, 21, 179184.

    • Search Google Scholar
    • Export Citation
  • Sherwood, C. R., J. R. Lacey, and G. Voulgaris, 2006: Shear velocity estimates on the inner shelf off Grays Harbor, Washington, USA. Cont. Shelf Res., 26, 19952018.

    • Search Google Scholar
    • Export Citation
  • Simonsen, A. J., and P.-Å. Krogstad, 2005: Turbulent stress invariant analysis: Clarification of existing terminology. Phys. Fluids, 17, 088103, doi:10.1063/1.2009008.

    • Search Google Scholar
    • Export Citation
  • Skyllingstad, E. D., and D. W. Denbo, 1995: An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. J. Geophys. Res., 100, 85018522.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., 1996: Observations of Langmuir circulation, waves, and the mixed layer. The Air–Sea Interface: Radio and Acoustic Sensing, Turbulence, and Wave Dynamics, M. A. Donelan, W. Hui, and W. J. Plant, Eds., University of Toronto Press, 613–622.

  • Steffen, E., and E. A. D’Asaro, 2002: Deep convection in the Labrador Sea as observed by Lagrangian floats. J. Phys. Oceanogr., 32, 475492.

    • Search Google Scholar
    • Export Citation
  • Sternberg, R. W., 1968: Friction factors in tidal channels with differing bed roughness. Mar. Geol., 6, 243260.

  • Sullivan, P. P., and J. C. McWilliams, 2010: Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech., 42, 1942.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452.

    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., and C. E. Grosch, 2007: Langmuir turbulence in shallow water: Part II. Large-eddy simulation. J. Fluid Mech., 576, 63108.

    • Search Google Scholar
    • Export Citation
  • Tejada-Martínez, A. E., C. E. Grosch, A. E. Gargett, J. A. Polton, J. A. Smith, and J. A. MacKinnon, 2009: A hybrid spectral/finite difference large-eddy simulator of turbulent processes in the upper ocean. Ocean Modell., 30, 115142.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. The MIT Press, 300 pp.

  • Thorpe, S. A., 2004: Langmuir circulation. Annu. Rev. Fluid Mech., 36, 5579.

  • Thorpe, S. A., and J. M. Brubaker, 1983: Observations of sound reflection by temperature microstructure. Limnol. Oceanogr., 28, 601613.

    • Search Google Scholar
    • Export Citation
  • Toba, Y., 1973: Local balance in the air–sea boundary process. J. Oceanogr. Soc. Japan, 29, 209220.

  • Tseng, R.-S., and E. A. D’Asaro, 2004: Measurements of turbulent vertical kinetic energy in the ocean mixed layer from Lagrangian floats. J. Phys. Oceanogr., 34, 19841990.

    • Search Google Scholar
    • Export Citation
  • Webb, A., and B. Fox-Kemper, 2011: Wave spectral moments and Stokes drift estimation. Ocean Modell., 40, 273288.

  • Zedel, L., and D. M. Farmer, 1991: Organized structures in subsurface bubble clouds: Langmuir circulation in the open ocean. J. Geophys. Res., 96, 88898900.

    • Search Google Scholar
    • Export Citation
  • Zikanov, O., D. N. Slinn, and M. R. Dhanak, 2002: Turbulent convection driven by surface cooling in shallow water. J. Fluid Mech., 464, 81111.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 322 158 6
PDF Downloads 143 53 0

Turbulence Process Domination under the Combined Forcings of Wind Stress, the Langmuir Vortex Force, and Surface Cooling

View More View Less
  • 1 Old Dominion University, Norfolk, Virginia, and Institute of Ocean Sciences, Sidney, British Columbia, Canada
  • | 2 Old Dominion University, Norfolk, Virginia
Restricted access

Abstract

Turbulence in the ocean surface layer is generated by time-varying combinations of destabilizing surface buoyancy flux, wind stress forcing, and wave forcing through a vortex force associated with the surface wave field. Observations of time- and depth-averaged vertical velocity variance of full-depth turbulence in shallow unstratified water columns under destabilizing buoyancy forcing are used to determine when process domination can be assigned over a wide range of mixed forcings. The properties of two turbulence archetypes, one representing full-depth Langmuir circulations and the other representing full-depth convection, are described in detail. It is demonstrated that these archetypes lie in distinct regions of the plane of , where and are Langmuir and Rayleigh numbers, respectively, derived from scaling with surface stress velocity and a time scale characteristic of the growth of Langmuir circulation , where and are mean and Stokes velocities, respectively. Situations in which neither process dominates lie between the two end members, with relative dominance given by proximity to one or the other. Cases dominated by direct stress forcing are conspicuous by their absence. In cases of Langmuir domination, surface Stokes velocity is linearly related to , making it impossible to differentiate between scaling depth-averaged vertical velocity variance with , and any other scaling involving both and . A third nondimensional parameter is introduced and used to assess the importance of bottom boundary layer turbulence in a depth-limited system. Questions of time dependence and applicability of results to the open ocean surface boundary layer are considered.

Corresponding author address: Ann Gargett, Institute of Ocean Sciences, P.O. Box 6000, Sidney, BC V8L 4B2, Canada. E-mail: gargettann@gmail.com

Abstract

Turbulence in the ocean surface layer is generated by time-varying combinations of destabilizing surface buoyancy flux, wind stress forcing, and wave forcing through a vortex force associated with the surface wave field. Observations of time- and depth-averaged vertical velocity variance of full-depth turbulence in shallow unstratified water columns under destabilizing buoyancy forcing are used to determine when process domination can be assigned over a wide range of mixed forcings. The properties of two turbulence archetypes, one representing full-depth Langmuir circulations and the other representing full-depth convection, are described in detail. It is demonstrated that these archetypes lie in distinct regions of the plane of , where and are Langmuir and Rayleigh numbers, respectively, derived from scaling with surface stress velocity and a time scale characteristic of the growth of Langmuir circulation , where and are mean and Stokes velocities, respectively. Situations in which neither process dominates lie between the two end members, with relative dominance given by proximity to one or the other. Cases dominated by direct stress forcing are conspicuous by their absence. In cases of Langmuir domination, surface Stokes velocity is linearly related to , making it impossible to differentiate between scaling depth-averaged vertical velocity variance with , and any other scaling involving both and . A third nondimensional parameter is introduced and used to assess the importance of bottom boundary layer turbulence in a depth-limited system. Questions of time dependence and applicability of results to the open ocean surface boundary layer are considered.

Corresponding author address: Ann Gargett, Institute of Ocean Sciences, P.O. Box 6000, Sidney, BC V8L 4B2, Canada. E-mail: gargettann@gmail.com
Save