• Arhan, M., 1987: On the large-scale dynamics of the Mediterranean outflow. Deep Sea Res.,34, 11871208.

  • Boebel, O., R. E. Davis, M. Ollitrault, R. G. Peterson, P. L. Richardson, C. Schmid, and W. Zenk, 1999: The intermediate depth circulation of the western South Atlantic. Geophys. Res. Lett., 26, 33293332.

    • Search Google Scholar
    • Export Citation
  • Boebel, O., J. Lutjeharms, C. Schmid, W. Zenk, T. Rossby, and C. Barron, 2003: The Cape Cauldron: A regime of turbulent inter-ocean exchange. Deep-Sea Res. II, 50,57–86.

    • Search Google Scholar
    • Export Citation
  • Bower, A. S., and Coauthors, 2002: Directly-measured middepth circulation in the northeastern North Atlantic Ocean. Nature, 419, 603607.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., R. E. Davis, and C. Fandry, 1976: A technique for objective analysis and design of oceanographic experiments. Deep-Sea Res., 23, 559582.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., H. Hill, R. F. Reiniger, and B. A. Warren, 1980: Current system south and east of the Grand Banks of Newfoundland. J. Phys. Oceanogr., 10, 2565.

    • Search Google Scholar
    • Export Citation
  • Cravatte, S., W. S. Kessler, and F. Marin, 2012: Intermediate zonal jets in the tropical Pacific Ocean observed by Argo floats. J. Phys. Oceanogr., 42, 14751485.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1998: Preliminary results from directly measuring mid-depth circulation in the tropical and South Pacific. J. Geophys. Res., 103, 24 61924 639.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 2005: Intermediate-depth circulation of the Indian and South Pacific Oceans measured by autonomous floats. J. Phys. Oceanogr., 35, 683707.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., and W. Zenk, 2001: Subsurface Lagrangian observations during the 1990s. Ocean Circulation and Climate, G. Siedler, J. Church, and W. J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 123–139.

  • Davis, R. E., D. C. Webb, L. A. Regier, and J. Dufour, 1992: The autonomous Lagrangian circulation explorer (ALACE). J. Atmos. Oceanic Technol., 9, 264285.

    • Search Google Scholar
    • Export Citation
  • Defant, A., 1961: Physical Oceanography. Vol. 1, Pergamon Press, 729 pp.

  • Dibarboure, G., M. I. Pujol, F. Briol, P. Y. Le Traon, G. Larnicol, N. Picot, F. Mertz, and M. Ablain, 2011: Jason-2 in DUACS: Updated system description, first tandem results and impact on processing and products. Mar. Geod., 34, 214241.

    • Search Google Scholar
    • Export Citation
  • Ezer, T., and G. L. Mellor, 1994: Diagnostic and prognostic calculations of the North Atlantic circulation and sea level using a sigma coordinate ocean model. J. Geophys. Res., 99, 14 15914 172.

    • Search Google Scholar
    • Export Citation
  • Ganachaud, A., and C. Wunsch, 2000: Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408, 453457.

    • Search Google Scholar
    • Export Citation
  • Gent, P., and J. C. McWilliams, 1983: Regimes of validity for balanced models. Dyn. Atmos. Oceans, 7, 167183.

  • Gill, A. E., 1968: A linear model of the Antarctic Circumpolar Current. J. Fluid Mech., 32, 465488.

  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gille, S. T., 2003: Floats observations of the Southern Ocean. Part I: Estimating mean fields, bottom velocities, and topographic steering. J. Phys. Oceanogr.,33, 11671181.

    • Search Google Scholar
    • Export Citation
  • Gouriou, Y., T. Delcroix, and G. Eldin, 2006: Upper and intermediate circulation in the western equatorial Pacific Ocean in October 1999 and April 2000. Geophys. Res. Lett., 33, L10603, doi:10.1029/2006GL025941.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., 1983: A note on the deep circulation of the western North Atlantic: Its nature and causes. Deep-Sea Res., 30, 945961.

  • Holland, W. R., and A. D. Hirschman, 1972: A numerical calculation of the circulation of the North Atlantic Ocean. J. Phys. Oceanogr., 2, 336354.

    • Search Google Scholar
    • Export Citation
  • Holland, W. R., and P. B. Rhines, 1980: An example of eddy-induced ocean circulation. J. Phys. Oceanogr., 10, 10101031.

  • Hua, B. L., M. d’Orgeville, M. D. Fruman, C. Menesguen, R. Schopp, P. Klein, and H. Sasaki, 2008: Destabilization of mixed Rossby gravity waves and the formation of equatorial zonal jets. J. Fluid Mech., 610, 311341.

    • Search Google Scholar
    • Export Citation
  • Huck, T., A. Colin de Verdière, P. Estrade, and R. Schopp, 2008: Low-frequency variations of the large scale ocean circulation and heat transport in the North Atlantic from 1955–1998 in situ temperature and salinity data. Geophys. Res. Lett., 35, L23613, doi:10.1029/2008GL035635.

    • Search Google Scholar
    • Export Citation
  • Jenkins, W. T., D. T. Webb, L. Merlivat, and W. Roether, 1988: The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Philos. Trans. Roy. Soc. London,A325, 4361.

    • Search Google Scholar
    • Export Citation
  • Katsumata, K., and H. Yoshinari, 2010: Uncertainties in global mapping of Argo drift data at the parking level. J. Oceanogr., 66, 553569.

    • Search Google Scholar
    • Export Citation
  • Kawaze, M., and J. L. Sarmiento, 1986: Circulation and nutrients in middepth Atlantic waters. J. Geophys. Res., 91 (C8), 97499770.

  • Keffer, T., 1985: The ventilation of the world's oceans: Maps of the potential vorticity field. J. Phys. Oceanogr., 15, 509523.

  • Lacombe, H., and P. Tchernia, 1960: Quelques traits généraux de l’hydrologie méditerranéenne. Cah. Oceanogr., 12, 527–548.

  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Middepth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407, 6669.

    • Search Google Scholar
    • Export Citation
  • Lebedev, K. V., H. Yoshinari, N. A. Maximenko and P. W. Hacker, 2007: YoMaHa’07—Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4(2), 16 pp.

  • Legeais, J. F., M. Ollitrault, and M. Arhan, 2012: Lagrangian observations in the Intermediate Western Boundary Current of the South Atlantic. Deep-Sea Res. II, 85, 109–126, doi:10.1016/j.dsr2.2012.07.028.

    • Search Google Scholar
    • Export Citation
  • Lozier, M. S., 1997: Evidence for large scale eddy-driven gyres in the North Atlantic. Science, 277, 361364.

  • Luyten, J. R., J. Pedlosky, and H. Stommel, 1983: The ventilated thermocline. J. Phys. Oceanogr., 13, 292309.

  • Mann, C. R., 1967: The termination of the Gulf Stream and the beginning of the North Atlantic Current. Deep-Sea Res., 14, 337359.

  • Martel, F., and C. Wunsch, 1993: The North Atlantic Circulation in the early 1980s—An estimate from inversion of a finite difference model. J. Phys. Oceanogr., 23, 898924.

    • Search Google Scholar
    • Export Citation
  • Maximenko, N., P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurioni, D. Chambers, V. Zlotnicki, and B. Galperin, 2009: Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J. Atmos. Oceanic Technol., 26, 19101919.

    • Search Google Scholar
    • Export Citation
  • Mercier, H., M. Ollitrault, and P. Y. Le Traon, 1993: An inverse model of the North Atlantic general circulation using Lagrangian float data. J. Phys. Oceanogr., 23, 689715.

    • Search Google Scholar
    • Export Citation
  • Mesinger F. and A. Arakawa, 1976: Numerical methods used in atmospheric models. GARP Publ. Ser.,17, 1–64.

  • Niiler, P. N., N. A. Maximenko, and J. C. McWilliams, 2003: Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30, 2164, doi:10.1029/2003GL018628.

    • Search Google Scholar
    • Export Citation
  • Olbers, D., M. Wentzel, and J. Willebrand, 1985: The inference of North Atlantic circulation patterns from climatological hydrographic data. Rev. Geophys., 23, 313356.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., 1999: MARVOR floats reveal intermediate circulation in the western equatorial and tropical South Atlantic (30°S to 5°N). International WOCE Newsletter, Vol. 34, WOCE International Project Office, Southampton, United Kingdom, 7–10.

  • Ollitrault, M., and A. Colin de Verdière, 2002: SOFAR floats reveal mid-latitude north Atlantic general circulation. Part II: An Eulerian view. J. Phys. Oceanogr., 32, 20342053.

    • Search Google Scholar
    • Export Citation
  • Ollitrault, M., and J. P. Rannou, 2013: ANDRO: An Argo-based deep displacement dataset. J. Atmos. Oceanic Technol., 30, 759788.

  • Ollitrault, M., M. Lankhorst, D. Fratantoni, P. Richardson, and W. Zenk, 2006: Zonal intermediate currents in the equatorial Atlantic Ocean. Geophys. Res. Lett., 33, L05605, doi:10.1029/2005GL025368.

    • Search Google Scholar
    • Export Citation
  • Park, Y. H., and J. M. Guernier, 2001: A simple method for diagnosing the bottom current field of the World’s Oceans. J. Phys. Oceanogr., 31, 972990.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 1996: Ocean Circulation Theory. Springer, 453 pp.

  • Provost, C., and R. Salmon, 1986: A variational method for inverting hydrographic data. J. Mar. Res., 44, 134.

  • Reid, J. L., 1981: On the mid-depth circulation of the World Ocean. Evolution of Physical Oceanography: Scientific Surveys in Honor of H. Stommel, B. A. Warren and C. Wunsch, Eds., MIT Press, 70–110.

  • Reid, J. L., 1989: On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers and transports. Prog. Oceanogr.,23, 149–244.

  • Reid, J. L., 1994: On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers and transports. Prog. Oceanogr.,33, 1–92.

  • Reid, J. L., 1997: On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers and transports. Prog. Oceanogr.,39, 263–352.

  • Reid, J. L., 2003: On the total geostrophic circulation of the Indian Ocean: Flow patterns, tracers and transports. Prog. Oceanogr.,56, 137–186.

  • Rhines, P. B., and W. R. Holland, 1979: A theoretical discussion of eddy driven mean flows. Dyn. Atmos. Oceans, 3, 289325.

  • Richards, K. J., N. A. Maximenko, F. O. Bryan, and H. Sasaki, 2006: Zonal jets in the Pacific Ocean. Geophys. Res. Lett., 33, L03605, doi:10.1029/2005GL024645.

    • Search Google Scholar
    • Export Citation
  • Roache, P. J., 1985: Computational Fluid Dynamics. Hermosa Publishers, 446 pp.

  • Roemmich, D., and T. McCallister, 1989: Large scale circulation of the North Pacific Ocean. Prog. Oceanogr.,22, 171–204.

  • Rooth, C., H. Stommel, and G. Veronis, 1978: On motions in steady, layered, geostrophic models. J. Oceanogr. Soc. Japan, 34, 265267.

  • Sarkisyan, A. S., and F. F. Ivanov, 1971: The combined effect of baroclinicity and bottom topography as an important factor in the dynamics of ocean currents. Izv. Acad. Sci. Nauk SSSR, Atmos. Oceanic Phys., 1, 173188.

    • Search Google Scholar
    • Export Citation
  • Saunders, P. M., and B. A. King, 1995: Bottom currents derived from a shipborne ADCP on WOCE cruise A11 in the South Atlantic. J. Phys. Oceanogr., 25, 329347.

    • Search Google Scholar
    • Export Citation
  • Schmitz, W. J., 1996a: On the World Ocean circulation: Volume I: Some global features/North Atlantic circulation. Woods Hole Oceanographic Institution Tech. Rep. WHOI-96-03, 141 pp.

  • Schmitz, W. J., 1996b: On the World Ocean circulation: Volume II: The Pacific and Indian Oceans/A global update. Woods Hole Oceanographic Institution Tech. Rep. WHOI-96-08, 237 pp.

  • Schmitz, W. J., and M. S. McCartney, 1993: On the North Atlantic circulation. Rev. Geophys., 31, 2949.

  • Schott, F. A., and J. P. McCreary, 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123.

  • Stommel, H., 1957: A survey of ocean current theory. Deep-Sea Res., 4, 149184.

  • Stommel, H., and F. Schott, 1977: The beta spiral and the determination of the absolute velocity field from hydrographic station data. Deep-Sea Res., 24, 325329.

    • Search Google Scholar
    • Export Citation
  • Sverdrup, H. U., M. W. Johnson, and R. H. Fleming, 1942: The Oceans. Prentice-Hall, 1087 pp.

  • Tennekes, H., and J. Lumley, 1972: A First Course in Turbulence. MIT Press, 300 pp.

  • Väge, K., and Couathors, 2009: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci., 2, 6772.

    • Search Google Scholar
    • Export Citation
  • Willis, J. K., and L. L. Fu, 2008: Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean. J. Geophys. Res., 113, C12017, doi:10.1029/2007JC004690.

    • Search Google Scholar
    • Export Citation
  • Worthington, L. V., 1976: On the North Atlantic circulation. Oceanographic Studies. The John Hopkins University, 110 pp.

  • Wunsch, C., 1978: The North Atlantic circulation west of 50°W determined by inverse methods. Rev. Geophys. Space Phys., 16, 583620.

  • Wunsch, C., 2008: The Past and Future Ocean Circulation from a Contemporary Perspective. Geophys. Monogr., No. 173, Amer. Geophys. Union, 53–74.

  • Wunsch, C., and B. Grant, 1982: Towards the general circulation of the North Atlantic Ocean. Prog. Oceanogr.,11, 1–59.

  • Wüst, G., 1924: Florida und Antillenstrom, eine hydrodynamische untersuchung. Veröff. Inst. Meeresk. Univ. Berl., 12, 549.

  • Yoshinari, H., N. A. Maximenko, and P. W. Hacker, 2006: YoMaHa’05—Velocity data assessed from trajectories of Argo floats at parking level and at the sea surface. IPRC Tech. Note 4, 16 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 626 290 18
PDF Downloads 490 231 39

The Ocean General Circulation near 1000-m Depth

View More View Less
  • 1 Laboratoire de Physique des Océans, IFREMER, Centre de Brest, Plouzané, France
  • | 2 Laboratoire de Physique des Océans, Université de Bretagne Occidentale, Brest, France
Restricted access

Abstract

The mean ocean circulation near 1000-m depth is estimated with 100-km resolution from the Argo float displacements collected before 1 January 2010. After a thorough validation, the 400 000 or so displacements found in the 950–1150 dbar layer and with parking times between 4 and 17 days allow the currents to be mapped at intermediate depths with unprecedented details. The Antarctic Circumpolar Current (ACC) is the most prominent feature, but western boundary currents (and their recirculations) and alternating zonal jets in the tropical Atlantic and Pacific are also well defined. Eddy kinetic energy (EKE) gives the mesoscale variability (on the order of 10 cm2 s−2 in the interior), which is compared to the surface geostrophic altimetric EKE showing e-folding depths greater than 700 m in the ACC and northern subpolar regions. Assuming planetary geostrophy, the geopotential height of the 1000-dbar isobar is estimated to obtain an absolute and deep reference level worldwide. This is done by solving numerically the Poisson equation that results from taking the divergence of the geostrophic equations on the sphere, assuming Neumann boundary conditions.

Corresponding author address: M. Ollitrault, Laboratoire de Physique des Océans, IFREMER, Centre de Brest, BP 70, 29280 Plouzané, France. E-mail: michel.ollitrault@ifremer.fr

Abstract

The mean ocean circulation near 1000-m depth is estimated with 100-km resolution from the Argo float displacements collected before 1 January 2010. After a thorough validation, the 400 000 or so displacements found in the 950–1150 dbar layer and with parking times between 4 and 17 days allow the currents to be mapped at intermediate depths with unprecedented details. The Antarctic Circumpolar Current (ACC) is the most prominent feature, but western boundary currents (and their recirculations) and alternating zonal jets in the tropical Atlantic and Pacific are also well defined. Eddy kinetic energy (EKE) gives the mesoscale variability (on the order of 10 cm2 s−2 in the interior), which is compared to the surface geostrophic altimetric EKE showing e-folding depths greater than 700 m in the ACC and northern subpolar regions. Assuming planetary geostrophy, the geopotential height of the 1000-dbar isobar is estimated to obtain an absolute and deep reference level worldwide. This is done by solving numerically the Poisson equation that results from taking the divergence of the geostrophic equations on the sphere, assuming Neumann boundary conditions.

Corresponding author address: M. Ollitrault, Laboratoire de Physique des Océans, IFREMER, Centre de Brest, BP 70, 29280 Plouzané, France. E-mail: michel.ollitrault@ifremer.fr
Save