• Araujo, M., and Coauthors, 2011: Salinity-induced mixed and barrier layers in the southwestern tropical Atlantic Ocean off the northeast of Brazil. Ocean Sci.,7, 63–73, doi:10.5194/os-7-63-2011.

  • Balaguru, K., P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li, and J.-S. Hsieh, 2012a: Ocean barrier layers' effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA,109, 14 343–14 347, doi:10.1073/pnas.1201364109.

  • Balaguru, K., P. Chang, R. Saravanan, and C. J. Yang, 2012b: The barrier layer of the Atlantic warm pool: Formation mechanism and influence on the mean climate. Tellus, 64A, 117.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high-resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Climate Dyn.,39, 239–258, doi:10.1007/s00382-011-1146-6.

  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic simulated by a general circulation model with two different mixed layer physics. J. Phys. Oceanogr., 23, 13631388.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., M. Arhan, A. Lazar, and G. Prevost, 2002: A Lagrangian numerical investigation of the origins and fates of the salinity maximum water in the Atlantic. J. Geophys. Res.,107 (C10), doi:10.1029/2002JC001318.

  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250.

    • Search Google Scholar
    • Export Citation
  • Bosc, C., T. Delcroix, and C. Maes, 2009: Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J. Geophys. Res.,114, C06023, doi:10.1029/2008JC005187.

  • Bracco, A., and J. C. McWilliams, 2010: Reynolds-number dependency in homogeneous, stationary two-dimensional turbulence. J. Fluid Mech., 646, 517526.

    • Search Google Scholar
    • Export Citation
  • Breugem, W.-P., P. Chang, C. Jang, J. Mignot, and W. Hazeleger, 2008: Barrier layers and tropical Atlantic SST biases in coupled GCMs. Tellus, 60A, 885897.

    • Search Google Scholar
    • Export Citation
  • Buarque, S., H. Giordani, G. Caniaux, and S. Planton, 2004: Evaluation of the ERA-40 air–sea surface heat flux spin-up. Dyn. Atmos. Oceans,37, 295–311, doi:10.1016/j.dynatmoce.2003.10.001.

  • Capet, X., E. J. Campos, and A. M. Paiva, 2008a: Submesoscale activity over the Argentian shelf. Geophys. Res. Lett., 35, 26.

  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California current system. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. C. McWilliams, M. J. Molemaker, and A. F. Shchepetkin, 2008c: Mesoscale to submesoscale transition in the California current system. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., S. A. Grodsky, and H. Liu, 2008: Variability of the oceanic mixed layer, 1960–2004. J. Climate,21, 1029–1047.

  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first-baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Conkright, M., S. Levitus, T. O'Brien, T. Boyer, J. Antonov, and C. Stephens, 1998: World Ocean Atlas 1998 CD-ROM Dataset Documentation. National Oceanographic Data Center Tech. Rep. 15, CD-ROM.

  • Cronin, M. F., and M. J. McPhaden, 2002: Barrier layer formation during westerly wind bursts. J. Geophys. Res.,107 (C12), doi:10.1029/2001JC001171.

  • de Boyer Montégut, C. D., G. Madec, A. S. Fischer, A. Lazar, and D. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res.,109, C12003, doi:10.1029/2004JC002378.

  • de Boyer Montégut, C. D., J. Mignot, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the World Ocean: 1. General description. J. Geophys. Res.,112, C06011, doi:10.1029/2006JC003953.

  • Debreu, L., P. Marchesiello, P. Penven, and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modell.,49–50, 1–21, doi:10.1016/j.ocemod.2012.03.003.

  • Delcroix, T., and M. McPhaden, 2002: Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J. Geophys. Res.,107 (C12), doi:10.1029/2001JC000862.

  • Elhmaidi, D., A. Provenzale, and A. Babiano, 1993: Elementary topology of two-dimensional turbulence from a Lagrangian view-point and single particle dispersion. J. Fluid Mech., 257, 533558.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996b: Bulk parameterization of air–sea fluxes for tropical ocean global atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 37473764.

    • Search Google Scholar
    • Export Citation
  • Foltz, G. R., and M. J. McPhaden, 2009: Impact of barrier layer thickness on SST in the central tropical North Atlantic. J. Climate,22, 285–299.

  • Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. Part I: Theory and diagnosis. J. Phys. Oceanogr., 38, 11451165.

    • Search Google Scholar
    • Export Citation
  • Godfrey, J. S., and E. J. Lindstrom, 1989: The heat-budget of the equatorial western Pacific surface mixed layer. J. Geophys. Res.,94 (C6), 8007–8017.

  • Griffa, A., R. Lumpkin, and M. Veneziani, 2008: Cyclonic and anticyclonic motion in the upper ocean. Geophys. Res. Lett.,35, L01608, doi:10.1029/2007GL032100.

  • Helber, R. W., A. B. Kara, J. G. Richman, M. R. Carnes, C. N. Barron, H. E. Hurlburt, and T. Boyer, 2012: Temperature versus salinity gradients below the ocean mixed layer. J. Geophys. Res.,117, C05006, doi:10.1029/2011JC007382.

  • Isern-Fontanet, J., E. Garcia-Ladona, and J. Font, 2003: Identification of marine eddies from altimetric maps. J. Atmos. Oceanic Technol., 20, 772778.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., E. Garcia-Ladona, and J. Font, 2006: Vortices of the Mediterranean Sea: An altimetric perspective. J. Phys. Oceanogr.,36, 87–103.

  • Jerlov, N., 1968: Optical Oceanography. Elsevier Publishing Company, 199 pp.

  • Kara, A. B., P. Rochford, and H. Hurlburt, 2000: An optimal definition for ocean mixed layer depth. J. Geophys. Res.,105 (C7), 16 803–16 821.

  • Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2003: Mixed layer depth variability over the global ocean. J. Geophys. Res.,108, 3079, doi:10.1029/2000JC000736.

  • Lambert, R. B., and W. Sturges, 1977: Thermohaline staircase and vertical mixing in thermocline. Deep-Sea Res., 24, 211222.

  • Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical mixing—A review and a model with a nonlocal boundary-layer parameterization. Rev. Geophys., 32, 363403.

    • Search Google Scholar
    • Export Citation
  • Liu, H., S. A. Grodsky, and J. A. Carton, 2009: Observed subseasonal variability of oceanic barrier and compensated layers. J. Climate,22, 6104–6119.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of the air–sea exchange of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735.

    • Search Google Scholar
    • Export Citation
  • Lukas, R., and E. Lindstrom, 1991: The mixed layer of the western equatorial Pacific Ocean. J. Geophys. Res.,96, 3343–3357.

  • Lumpkin, R., and S. Garzoli, 2005: Near-surface circulation in the tropical Atlantic Ocean. Deep-Sea Res.,52, 495–518, doi:10.1016/j.dsr.2004.09.001.

  • Maes, C., J. Picaut, and S. Belamari, 2005: Importance of the salinity barrier layer for the buildup of El Niño. J. Climate,18, 104–118.

  • Marchesiello, P., J. C. McWilliams, and A. F. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. F. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783.

    • Search Google Scholar
    • Export Citation
  • Masson, S., and Coauthors, 2005: Impact of barrier layer on winter–spring variability of the southeastern Arabian Sea. Geophys. Res. Lett.,32, L07703,doi:10.1029/2004GL021980.

  • McWilliams, J. C., 1984: The emergency of isolated coherent vortices in turbulent flow. J. Fluid Mech., 146, 2143.

  • Mensa, J. A., Z. Garraffo, A. Griffa, T. M. Özgökmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn.,63, 923941.

  • Mignot, J., C. de Boyer Montégut, A. Lazar, and S. Cravatte, 2007: Control of salinity on the mixed layer depth in the World Ocean: 2. Tropical areas. J. Geophys. Res.,112, C10010,doi:10.1029/2006JC003954.

  • Mitchell, T. P., and J. M. Wallace, 1992: The annual cycle in equatorial convection and sea-surface temperature. J. Climate, 5, 11401156.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M. J., J. C. McWilliams, and I. Yavneh, 2005: Baroclinic instability and loss of balance. J. Phys. Oceanogr., 35, 15051517.

    • Search Google Scholar
    • Export Citation
  • Muller, P., M. J. Molemaker, and J. McWilliams, 2005: Routes to dissipation in the ocean: The 2D/3D turbulence conundrum. Marine Turbulence: Theories, Observations and Models, H. Z. Baumert, J. Simpson, and J. Sündermann, Eds., Cambridge University Press, 397–405.

  • National Geophysical Data Center, 2001: 2-Minute Gridded Global Relief Data (ETOPO2). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, CD-ROM. [Available online at http://www.ngdc.noaa.gov/mgg/global/.]

  • O'Connor, B. M., R. A. Fine, and D. B. Olson, 2005: A global comparison of subtropical underwater formation rates. Deep-Sea Res.,52, 1569–1590, doi:10.1016/j.dsr.2005.01.011.

  • Okubo, A., 1970: Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep-Sea Res.,17, 445–454, doi:10.1016/0011-7471(70)90059-8.

  • Özgökmen, T. M., A. C. Poje, P. F. Fischer, and A. C. Haza, 2011: Large-eddy simulations of mixed layer instabilities and sampling strategies. Ocean Modell.,39 (3–4), 311–331, doi:10.1016/j.ocemod.2011.05.006.

  • Pasquero, C., A. Provenzale, and A. Babiano, 2001: Parameterization of dispersion in two-dimensional turbulence. J. Fluid Mech., 439, 279303.

    • Search Google Scholar
    • Export Citation
  • Penven, P., L. Debreu, P. Marchesiello, and J. C. McWilliams, 2006: Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Modell., 12, 157187.

    • Search Google Scholar
    • Export Citation
  • Petersen, M. R., K. Julien, and J. B. Weiss, 2006: Vortex cores, strain cells, and filaments in quasigeostrophic turbulence. Phys. Fluids,18, 026601, doi:10.1063/1.2166452.

  • Rodrigues, R. R., L. M. Rothstein, and M. Wimbush, 2007: Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr.,37, 16–30.

  • Roske, F., 2006: A global heat and freshwater forcing dataset for ocean models. Ocean Modell.,11 (3–4), 235–297, doi:10.1016/j,ocemod.2004.12.005.

  • Sato, K., T. Suga, and K. Hanawa, 2006: Barrier layers in the subtropical gyres of the world's oceans. Geophys. Res. Lett.,33, L08603, doi:10.1029/2005GL025631.

  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2009: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227, pp. 3595-3624. J. Comp. Phys.,228, 8985–9000, doi:10.1016/j.jcp.2009.09.002.

  • Song, Y. T., and D. B. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228244.

    • Search Google Scholar
    • Export Citation
  • Sprintall, J., and M. Tomczak, 1992: Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res.,97 (C5), 7305–7316.

  • Sprintall, J., and D. Roemmich, 1999: Characterizing the structure of the surface layer in the Pacific Ocean. J. Geophys. Res.,104 (C10), 23 297–23 311.

  • Stramma, L., and F. Schott, 1999: The mean flow field of the tropical Atlantic Ocean. Deep-Sea Res. II,46 (1–2), 279–303, doi:10.1016/S0967-0645(98)00109-X.

  • Stramma, L., M. Rhein, P. Brandt, M. Dengler, C. Boning, and M. Walter, 2005: Upper ocean circulation in the western tropical Atlantic in boreal fall 2000. Deep-Sea Res.,52, 221–240, doi:10.1016/j.dsr.2004.07.021.

  • Tailleux, R., A. Lazar, and C. J. C. Reason, 2005: Physics and dynamics of density-compensated temperature and salinity anomalies. Part I: Theory. J. Phys. Oceanogr.,35, 849–864.

  • Talley, L., W. Emery, G. Pickard, and J. Swift, 2011: Descriptive Physical Oceanography: An Introduction. Academic Press, 560 pp.

  • Tanguy, Y., S. Arnault, and P. Lattes, 2010: Isothermal, mixed, and barrier layers in the subtropical and tropical Atlantic Ocean during the ARAMIS experiment. Deep-Sea Res.,57, 501–517, doi:10.1016/j.dsr.2009.12.012.

  • Thomas, L. N., A. Tandon, and A. Mahadevan, 2008: Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys. Monogr., Vol. 177, Amer. Geophys. Union, 17–38.

  • Tsuchiya, M., L. D. Talley, and M. S. McCartney, 1994: Water-mass distributions in the western South Atlantic—A section from South Georgia Island (54°S) northward across the equator. J. Mar. Res.,52, 55–81, doi:10.1357/0022240943076759.

  • Uppala, S., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc.,131, 2961–3012, doi:10.1256/qj.04.176.

  • Vialard, J., and P. Delecluse, 1998a: An OGCM study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool. J. Phys. Oceanogr., 28, 10711088.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., and P. Delecluse, 1998b: An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J. Phys. Oceanogr., 28, 10891106.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and C. Gautier, 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174.

  • Wang, X., G. Han, Y. Qi, and W. Li, 2011: Impact of barrier layer on typhoon-induced sea surface cooling. Dyn. Atmos. Oceans,52, 367–385, doi:10.1016/j.dynatmoce.2011.05.002.

  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294.

  • Zavala Sanson, L., and J. Scheinbaum, 2008: Elementary properties of the enstrophy and strain fields in confined two-dimensional flows. Eur. J. Mech. BFluids, 27, 5461.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and M. McPhaden, 2000: Intraseasonal surface cooling in the equatorial western Pacific. J. Climate, 13, 22612276.

  • Zhang, D. X., M. J. McPhaden, and W. E. Johns, 2003: Observational evidence for flow between the subtropical and tropical Atlantic: The Atlantic subtropical cells. J. Phys. Oceanogr.,33, 1783–1797.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 240 107 9
PDF Downloads 183 83 7

Barrier Layers in the Tropical South Atlantic: Mean Dynamics and Submesoscale Effects

View More View Less
  • 1 Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California
  • | 2 ISMAR-CNR, Pozzuolo di Lerici, Italy, and Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 3 IMSG, NOAA/EMC, NCWCP, College Park, Maryland, and Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 4 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
Restricted access

Abstract

Barrier layers are generated when the surface mixed layer is shallower than the layer where temperature is well mixed, in geographical regions where salinity plays a key role in setting up upper-ocean density stratification. In the tropical oceans, thick barrier layers are also found in a latitude range where spiraling trajectories from surface in situ drifters suggest the presence of predominantly cyclonic submesoscale-like vortices. The authors explore these dynamical processes and their interplay in the present paper, focusing on the tropical South Atlantic Ocean and using a high-resolution modeling approach. The objective is threefold: to investigate the mean dynamics contributing to barrier-layer formation in this region, to study the distribution and seasonality of submesoscale features, and to verify whether and how the submesoscale impacts barrier-layer thickness. The model used is the Regional Ocean Modeling System (ROMS) in its Adaptive Grid Refinement in Fortran (AGRIF) online-nested configuration with a horizontal resolution ranging between 9 and 1 km. The simulated circulation is first described in terms of mean and submesoscale dynamics, and the associated seasonal cycle. Mechanisms for barrier-layer formation are then investigated. The results confirm previous hypotheses by Mignot et al. on the relevance of enhanced winter mixing deepening the isothermal layer, whereas the salinity stratification is sustained by advection of surface fresh waters and subsurface salinity maxima. Finally, submesoscale effects on barrier-layer thickness are studied, quantifying their contribution to vertical fluxes of temperature and salinity. Submesoscale vortices associated with salinity fronts are found to have a significant effect, producing thicker barrier layers (by ~20%–35%) and a shallower mixed layer because of their restratifying effect on salinity.

Corresponding author address: Milena Veneziani, Fluid Dynamics and Solid Mechanics Division, Los Alamos National Laboratory, MS B216, P.O. Box 1663, Los Alamos, NM 87545. E-mail: milena@lanl.gov

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-13-064.s1.

Current affiliation: Los Alamos National Laboratory, Los Alamos, New Mexico.

Abstract

Barrier layers are generated when the surface mixed layer is shallower than the layer where temperature is well mixed, in geographical regions where salinity plays a key role in setting up upper-ocean density stratification. In the tropical oceans, thick barrier layers are also found in a latitude range where spiraling trajectories from surface in situ drifters suggest the presence of predominantly cyclonic submesoscale-like vortices. The authors explore these dynamical processes and their interplay in the present paper, focusing on the tropical South Atlantic Ocean and using a high-resolution modeling approach. The objective is threefold: to investigate the mean dynamics contributing to barrier-layer formation in this region, to study the distribution and seasonality of submesoscale features, and to verify whether and how the submesoscale impacts barrier-layer thickness. The model used is the Regional Ocean Modeling System (ROMS) in its Adaptive Grid Refinement in Fortran (AGRIF) online-nested configuration with a horizontal resolution ranging between 9 and 1 km. The simulated circulation is first described in terms of mean and submesoscale dynamics, and the associated seasonal cycle. Mechanisms for barrier-layer formation are then investigated. The results confirm previous hypotheses by Mignot et al. on the relevance of enhanced winter mixing deepening the isothermal layer, whereas the salinity stratification is sustained by advection of surface fresh waters and subsurface salinity maxima. Finally, submesoscale effects on barrier-layer thickness are studied, quantifying their contribution to vertical fluxes of temperature and salinity. Submesoscale vortices associated with salinity fronts are found to have a significant effect, producing thicker barrier layers (by ~20%–35%) and a shallower mixed layer because of their restratifying effect on salinity.

Corresponding author address: Milena Veneziani, Fluid Dynamics and Solid Mechanics Division, Los Alamos National Laboratory, MS B216, P.O. Box 1663, Los Alamos, NM 87545. E-mail: milena@lanl.gov

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-13-064.s1.

Current affiliation: Los Alamos National Laboratory, Los Alamos, New Mexico.

Supplementary Materials

    • Supplemental Materials (ZIP 171.46 MB)
Save