• Biastoch, A., R. H. Käse, and D. B. Stammer, 2003: The sensitivity of the Greenland–Scotland Ridge overflow to forcing changes. J. Phys. Oceanogr., 33, 23072319.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., and F. Bryan, 1996: Large-scale transport processes in high-resolution circulation models. The Warmwatersphere of the North Atlantic Ocean, W. Krauss, Ed., Gebrüder Borntraeger, 91–128.

  • Böning, C. W., F. Bryan, W. R. Holland, and R. Döscher, 1996: Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr., 26, 11421164.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., M. Scheinert, J. Dengg, A. Biastoch, and A. Funk, 2006: Decadal variability of subpolar gyre transport and its reverberation in the North Atlantic overturning. Geophys. Res. Lett., 33, L21S01, doi:10.1029/2006GL026906.

    • Search Google Scholar
    • Export Citation
  • Born, A., and A. Levermann, 2010: The 8.2 ka event: Abrupt transition of the subpolar gyre toward a modern North Atlantic circulation. Geochem. Geophys. Geosyst.,11, Q06011, doi:10.1029/2009GC003024.

  • Born, A., and J. Mignot, 2012: Dynamics of decadal variability in the Atlantic subpolar gyre: A stochastically forced oscillator. Climate Dyn., 39, 461474, doi:10.1007/s00382-011-1180-4.

    • Search Google Scholar
    • Export Citation
  • Born, A., A. Levermann, and J. Mignot, 2009: Sensitivity of the Atlantic Ocean circulation to a hydraulic overflow parameterisation in a coarse resolution model: Response of the subpolar gyre. Ocean Modell., 27 (3–4), 130142.

    • Search Google Scholar
    • Export Citation
  • Born, A., M. Kageyama, and K. H. Nisancioglu, 2010a: Warm Nordic seas delayed glacial inception in Scandinavia. Climate Past, 6, 817826, doi:10.5194/cp-6-817-2010.

    • Search Google Scholar
    • Export Citation
  • Born, A., K. H. Nisancioglu, and P. Braconnot, 2010b: Sea ice induced changes in ocean circulation during the Eemian. Climate Dyn., 35, 1361–1371, doi:10.1007/s00382-009-0709-2.

    • Search Google Scholar
    • Export Citation
  • Born, A., K. H. Nisancioglu, and B. Risebrobakken, 2011: Late Eemian warming in the Nordic seas as seen in proxy data and climate models. Paleoceanography, 26, PA2207, doi:10.1029/2010PA002027.

    • Search Google Scholar
    • Export Citation
  • Born, A., T. F. Stocker, C. C. Raible, and A. Levermann, 2012: Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models? Climate Dyn., 40,29933007, doi:10.1007/s00382-012-1525-7.

    • Search Google Scholar
    • Export Citation
  • Born, A., T. F. Stocker, and A. B. Sandø, 2013: Coupling of eastern and western subpolar North Atlantic: Salt transport in the Irminger Current. Ocean Sci. Discuss., 10, 555579, doi:10.5194/osd-10-555-2013.

    • Search Google Scholar
    • Export Citation
  • Colin, C., N. Frank, K. Copard, and E. Douville, 2010: Neodymium isotopic composition of deep-sea corals from the NE Atlantic: Implications for past hydrological changes during the Holocene. Quat. Sci. Rev., 29, 25092517, doi:10.1016/j.quascirev.2010.05.012.

    • Search Google Scholar
    • Export Citation
  • Condron, A., and I. A. Renfrew, 2012: The impact of polar mesoscale storms on northeast Atlantic Ocean circulation. Nat. Geosci., 6, 3437, doi:10.1038/ngeo1661.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., and M. S. McCartney, 2001: Ocean gyre circulation changes associated with the North Atlantic Oscillation. J. Phys. Oceanogr., 31, 33743400.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., and C. Mauritzen, 2005: Dilution of the northern North Atlantic Ocean in recent decades. Science, 308, 17721774.

  • Delworth, T. L., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a coupled ocean–atmosphere model. J. Climate, 6, 19932011.

    • Search Google Scholar
    • Export Citation
  • Deshayes, J., F. Straneo, and M. A. Spall, 2009: Mechanisms of variability in a convective basin. J. Mar. Res., 67, 273303.

  • Dickson, R. R., and J. Brown, 1994: The production of North Atlantic Deep Water: Sources, rates, and pathways. J. Geophys. Res., 99, 12 31912 341.

    • Search Google Scholar
    • Export Citation
  • Dima, M., and G. Lohmann, 2011: Hysteresis behavior of the Atlantic Ocean circulation identified in observational data. J. Climate, 24, 397403.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and T. Jung, 2001: North Atlantic interdecadal variability: Oceanic response to the North Atlantic Oscillation (1865–1997). J. Climate, 14, 676691.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and J. Willebrand, 2001: Mechanism of interannual to decadal variability of the North Atlantic circulation. J. Climate, 14, 22662280.

    • Search Google Scholar
    • Export Citation
  • Gao, Y.-Q., and L. Yu, 2008: Subpolar gyre index and the North Atlantic meridional overturning circulation in a coupled climate model. Atmos. Oceanic Sci. Lett., 1, 2932.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model version 4. J. Climate, 24, 49734991.

  • Green, J. S. A., 1970: Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc., 96, 157185.

    • Search Google Scholar
    • Export Citation
  • Häkkinen, S., and P. B. Rhines, 2004: Decline of subpolar North Atlantic circulation during the 1990s. Science, 304, 555559.

  • Häkkinen, S., P. B. Rhines, and D. L. Worthen, 2011: Atmospheric blocking and Atlantic multidecadal ocean variability. Science, 334, 655659, doi:10.1126/science.1205683.

    • Search Google Scholar
    • Export Citation
  • Hátún, H., A. B. Sandø, H. Drange, B. Hansen, and H. Valdimarsson, 2005: Influence of the Atlantic subpolar gyre on the thermohaline circulation. Science, 309, 18411844.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., J. Finnis, and M. C. Serrenze, 2006: Simulated Arctic Ocean freshwater budgets in the twentieth and twenty-first centuries. J. Climate, 19, 62216242.

    • Search Google Scholar
    • Export Citation
  • Holliday, N. P., S. Bacon, J. Allen, and E. L. McDonagh, 2009: Circulation and transport in the western boundary currents at Cape Farewell, Greenland. J. Phys. Oceanogr., 39, 18541870.

    • Search Google Scholar
    • Export Citation
  • Iovino, D., F. Straneo, and M. Spall, 2008: The effect of a sill on dense water formation in a marginal sea. J. Mar. Res., 66, 325345.

    • Search Google Scholar
    • Export Citation
  • Irvali, N., and Coauthors, 2012: Rapid switches in subpolar North Atlantic hydrography and climate during the last interglacial (MIS 5e). Paleoceanography, 27, PA2207, doi:10.1029/2011PA002244.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., S. Titz, U. Feudel, and S. Rahmstorf, 2001: A simple model of seasonal open ocean convection. Part II: Labrador Sea stability and stochastic forcing. Ocean Dyn., 52, 3649.

    • Search Google Scholar
    • Export Citation
  • Langehaug, H., I. Medhaug, T. Eldevik, and O. H. Otterå, 2012: Arctic/Atlantic exchanges via the subpolar gyre. J. Climate, 25,24212439.

    • Search Google Scholar
    • Export Citation
  • Latif, M., C. Böning, J. Willebrand, A. Biastoch, J. Dengg, N. Keenlyside, U. Schwenckendiek, and G. Madec, 2006: Is the thermohaline circulation changing? J. Climate, 19, 46314637.

    • Search Google Scholar
    • Export Citation
  • Lazier, J. R. N., 1980: Oceanographic conditions at ocean weather ship Bravo, 1964–1974. Atmos.–Ocean, 18, 227238.

  • Lehner, F., C. C. Raible, D. Hofer, and T. F. Stocker, 2012: The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model. Climate Dyn., 39, 347363.

    • Search Google Scholar
    • Export Citation
  • Levermann, A., and A. Born, 2007: Bistability of the Atlantic subpolar gyre in a coarse-resolution model. Geophys. Res. Lett.,34, L24605, doi:10.1029/2007GL031732.

  • Lohmann, K., H. Drange, and M. Bentsen, 2009a: A possible mechanism for the strong weakening of the North Atlantic subpolar gyre in the mid-1990s. Geophys. Res. Lett.,36, L15602, doi:10.1029/2009GL039166.

  • Lohmann, K., H. Drange, and M. Bentsen, 2009b: Response of the North Atlantic subpolar gyre to persistent North Atlantic Oscillation like forcing. Climate Dyn., 32, 273285.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 1990: Instabilities and multiple equilibria of the thermohaline circulation. Ph.D. thesis, Christian-Albrechts-Universität Kiel, 127 pp.

  • Marotzke, J., 2000: Abrupt climate change and thermohaline circulation: Mechanisms and predictability. Proc. Natl. Acad. Sci. USA, 97, 13471350.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164.

  • Matei, D., H. Pohlmann, J. Jungclaus, W. Müller, H. Haak, and J. Marotzke, 2012: Two tales of initializing decadal climate prediction experiments with the ECHAM5/MPI-OM model. J. Climate, 25, 85028523.

    • Search Google Scholar
    • Export Citation
  • Mellor, G., C. Mechoso, and E. Keto, 1982: A diagnostic calculation of the general circulation of the Atlantic Ocean. Deep-Sea Res., 29, 11711192.

    • Search Google Scholar
    • Export Citation
  • Mengel, M., A. Levermann, C. Schleussner, and A. Born, 2012: Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model. Earth Syst. Dyn., 3, 189197, doi:10.5194/esd-3-189-2012.

    • Search Google Scholar
    • Export Citation
  • Mertz, G., and D. G. Wright, 1992: Interpretations of the JEBAR term. J. Phys. Oceanogr., 22, 301305.

  • Montero-Serrano, J.-C., N. Frank, C. Colin, C. Wienberg, and M. Eisele, 2011: The climate influence on the mid-depth northeast Atlantic gyres viewed by cold-water corals. Geophys. Res. Lett.,38, L19604, doi:10.1029/2011GL048733.

  • Montoya, M., A. Griesel, A. Levermann, J. Mignot, M. Hofmann, A. Ganopolski, and S. Rahmstorf, 2005: The earth system model of intermediate complexity CLIMBER-3α. Part I: Description and performance for present-day conditions. Climate Dyn., 25, 237263.

    • Search Google Scholar
    • Export Citation
  • Montoya, M., A. Born, and A. Levermann, 2011: Reversed North Atlantic gyre dynamics in present and glacial climates. Climate Dyn., 36, 11071118, doi:10.1007/s00382-009-0729-y.

    • Search Google Scholar
    • Export Citation
  • Msadek, R., K. W. Dixon, T. L. Delworth, and W. Hurlin, 2010: Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys. Res. Lett.,37, L19608, doi:10.1029/2010GL044517.

  • Myers, P. G., S. A. Josey, B. Wheler, and N. Kulan, 2007: Interdecadal variability in Labrador Sea precipitation minus evaporation and salinity. Prog. Oceanogr., 73, 341357.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811.

  • Rahmstorf, S., 2001: A simple model of seasonal open ocean convection. Part I: Theory. Ocean Dyn., 52, 2635.

  • Rhein, M., and Coauthors, 2011: Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic. Deep-Sea Res. II, 58, 18191832, doi:10.1016/j.dsr2.2010.10.061.

    • Search Google Scholar
    • Export Citation
  • Robson, J., R. Sutton, K. Lohmann, D. Smith, and M. D. Palmer, 2012: Causes of the rapid warming of the North Atlantic Ocean in the mid-1990s. J. Climate, 25, 41164134.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213.

  • Spall, M. A., 2008: Low-frequency interaction between horizontal and overturning gyres in the ocean. Geophys. Res. Lett.,35, L18614, doi:10.1029/2008GL035206.

  • Spall, M. A., 2011: On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas. J. Climate,24, 4844–4858.

  • Spall, M. A., 2012: Influences of precipitation on water mass transformation and deep convection. J. Phys. Oceanogr., 42, 16841700.

  • Spall, M. A., and D. C. Chapman, 1998: On the efficiency of baroclinic eddy heat transport across narrow fronts. J. Phys. Oceanogr., 28, 22752287.

    • Search Google Scholar
    • Export Citation
  • Stocker, T. F., and D. G. Wright, 1991: Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature, 351, 729732.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230.

  • Stone, P., 1972: A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci., 29, 405418.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006a: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606628.

  • Straneo, F., 2006b: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36, 18221840.

    • Search Google Scholar
    • Export Citation
  • Swingedouw, D., P. Braconnot, P. Delecluse, E. Guilyardi, and O. Marti, 2007: Quantifying the AMOC feedbacks during a 2×CO2 stabilization experiment with land-ice melting. Climate Dyn., 29, 521534, doi:10.1007/s00382-007-0250-0.

    • Search Google Scholar
    • Export Citation
  • Thornalley, D. J. R., H. Elderfield, and I. N. McCave, 2009: Holocene oscillations in temperature and salinity of the surface North Atlantic. Nature, 457, 711714.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., S. Theetten, E. P. Chassignet, T. Penduff, R. Smith, L. Talley, J. O. Beismann, and C. Böning, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35, 757774.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., and J. Marshall, 2012: Exploring mechanisms of variability and predictability of Atlantic meridional overturning circulation in two coupled climate models. J. Climate, 25, 40674080.

    • Search Google Scholar
    • Export Citation
  • Våge, K., and Coauthors, 2009: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci., 2, 6772.

    • Search Google Scholar
    • Export Citation
  • van Aken, H. M., and C. J. de Boer, 1995: On the synoptic hydrography of intermediate and deep water masses in the Iceland Basin. Deep-Sea Res. I, 42, 165189.

    • Search Google Scholar
    • Export Citation
  • Vellinga, M., and R. A. Wood, 2002: Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change, 54, 251267.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and H. Jones, 1996: Dynamics of isolated convective regions in the ocean. J. Phys. Oceanogr., 26, 17211734.

    • Search Google Scholar
    • Export Citation
  • Walsh, J. E., and D. H. Portis, 1999: Variations of precipitation and evaporation over the North Atlantic Ocean, 1958–1997. J. Geophys. Res., 104 (D14), 16 61316 631.

    • Search Google Scholar
    • Export Citation
  • Welander, P., 1982: A simple heat–salt oscillator. Dyn. Atmos. Oceans, 6, 233242, doi:10.1016/0377-0265(82)90030-6.

  • Yang, D., and O. A. Saenko, 2012: Ocean heat transport and its projected change in CanESM2. J. Climate, 25, 81488163.

  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2009: Enhanced production of Labrador Sea water in 2008. Geophys. Res. Lett.,36, L01606, doi:10.1029/2008GL036162.

  • Yeager, S., A. Karspeck, G. Danabasoglu, J. Tribbia, and H. Teng, 2012: A decadal prediction case study: Late 20th century North Atlantic Ocean heat content. J. Climate, 25, 51735189.

    • Search Google Scholar
    • Export Citation
  • Yoshimori, M., C. C. Raible, T. F. Stocker, and M. Renold, 2010: Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Climate Dyn., 34, 101121.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 292 145 8
PDF Downloads 196 88 2

Two Stable Equilibria of the Atlantic Subpolar Gyre

View More View Less
  • 1 Climate and Environmental Physics, Physics Institute, University of Bern, and Oeschger Centre for Climate Change Research, Bern, Switzerland
Restricted access

Abstract

The cyclonic circulation of the Atlantic subpolar gyre is a key mechanism for North Atlantic climate variability on a wide range of time scales. It is generally accepted that it is driven by both cyclonic winds and buoyancy forcing, yet the individual importance and dynamical interactions of the two contributions remain unclear. The authors propose a simplified four-box model representing the convective basin of the Labrador Sea and its shallow and deep boundary current system, the western subpolar gyre. Convective heat loss drives a baroclinic flow of relatively light water around the dense center. Eddy salt flux from the boundary current to the center increases with a stronger circulation, favors the formation of dense waters, and thereby sustains a strong baroclinic flow, approximately 10%–25% of the total. In contrast, when the baroclinic flow is not active, surface waters may be too fresh to convect, and a buoyancy-driven circulation cannot develop. This situation corresponds to a second stable circulation mode. A hysteresis is found for variations in surface freshwater flux and the salinity of the near-surface boundary current. An analytical solution is presented and analyzed.

Corresponding author address: Andreas Born, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. E-mail: born@climate.unibe.ch

Abstract

The cyclonic circulation of the Atlantic subpolar gyre is a key mechanism for North Atlantic climate variability on a wide range of time scales. It is generally accepted that it is driven by both cyclonic winds and buoyancy forcing, yet the individual importance and dynamical interactions of the two contributions remain unclear. The authors propose a simplified four-box model representing the convective basin of the Labrador Sea and its shallow and deep boundary current system, the western subpolar gyre. Convective heat loss drives a baroclinic flow of relatively light water around the dense center. Eddy salt flux from the boundary current to the center increases with a stronger circulation, favors the formation of dense waters, and thereby sustains a strong baroclinic flow, approximately 10%–25% of the total. In contrast, when the baroclinic flow is not active, surface waters may be too fresh to convect, and a buoyancy-driven circulation cannot develop. This situation corresponds to a second stable circulation mode. A hysteresis is found for variations in surface freshwater flux and the salinity of the near-surface boundary current. An analytical solution is presented and analyzed.

Corresponding author address: Andreas Born, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland. E-mail: born@climate.unibe.ch
Save