• Abbot, D. S., and I. Halevy, 2010: Dust aerosol important for Snowball Earth deglaciation. J. Climate, 23, 41214132.

  • Abbot, D. S., and R. T. Pierrehumbert, 2010: Mudball: Surface dust and Snowball Earth deglaciation. J. Geophys. Res., 115, D03104, doi:10.1029/2009JD012007.

    • Search Google Scholar
    • Export Citation
  • Abbot, D. S., A. Voigt, and D. Koll, 2011: The Jormungand global climate state and implications for Neoproterozoic glaciations. J. Geophys. Res.,116, D18103, doi:10.1029/2011JD015927.

  • Abbot, D. S., A. Voigt, M. Branson, R. T. Pierrehumbert, D. Pollard, G. Le Hir, and D. D. Koll, 2012: Clouds and Snowball Earth deglaciation. Geophys. Res. Lett.,39, L20711, doi:10.1029/2012GL052861.

  • Allen, P. A., and J. L. Etienne, 2008: Sedimentary challenge to Snowball Earth. Nat. Geosci., 1, 817–825.

  • Ashkenazy, Y., H. Gildor, M. Losch, F. A. Macdonald, D. P. Schrag, and E. Tziperman, 2013: Dynamics of a Snowball Earth ocean. Nature,495, 90–93, doi:10.1038/nature11894.

  • Baum, S., and T. Crowley, 2001: GCM response to late Precambrian (similar to 590 ma) ice-covered continents. Geophys. Res. Lett., 28, 583586.

    • Search Google Scholar
    • Export Citation
  • Baum, S., and T. Crowley, 2003: The snow/ice instability as a mechanism for rapid climate change: A Neoproterozoic Snowball Earth model example. Geophys. Res. Lett., 30, 2030, doi:10.1029/2003GL017333.

    • Search Google Scholar
    • Export Citation
  • Bryan, K., 1984: Accelerating the convergence to equilibrium of ocean–climate models. J. Phys. Oceanogr., 14, 666673.

  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the earth. Tellus, 21, 611619.

  • Campbell, A. J., E. D. Waddington, and S. G. Warren, 2011: Refugium for surface life on Snowball Earth in a nearly-enclosed sea? A first simple model for sea-glacier invasion. Geophys. Res. Lett., 38, L19502, doi:10.1029/2011GL048846.

    • Search Google Scholar
    • Export Citation
  • Chandler, M. A., and L. E. Sohl, 2000: Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophys. Res., 105 (D16), 20 73720 756.

    • Search Google Scholar
    • Export Citation
  • Crowley, T., and S. Baum, 1993: Effect of decreased solar luminosity on late Precambrian ice extent. J. Geophys. Res., 98 (D9), 16 72316 732.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., F. Fluteau, G. Ramstein, C. Ritz, and J. Besse, 2003: Is there a conflict between the Neoproterozoic glacial deposits and the Snowball Earth interpretation: An improved understanding with numerical modeling. Earth Planet. Sci. Lett., 208, 101112.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., Y. Godderis, G. Ramstein, A. Nedelec, and J. Meert, 2004a: A ‘Snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature, 428, 303306.

    • Search Google Scholar
    • Export Citation
  • Donnadieu, Y., G. Ramstein, F. Fluteau, D. Roche, and A. Ganopolski, 2004b: The impact of atmospheric and oceanic heat transports on the sea-ice–albedo instability during the Neoproterozoic. Climate Dyn., 22, 293306.

    • Search Google Scholar
    • Export Citation
  • Evans, D. A. D., and T. D. Raub, 2011: Neoproterozoic glacial palaeolatitudes: A global update. The Geological Record of Neoproterozoic Glaciations, E. Arnaud, G. P. Halverson, and G. Shields-Zhou, Eds., Geological Society of London, 93–112.

  • Ferreira, D., J. Marshall, and B. E. J. Rose, 2011: Climate determinism revisited: Multiple equilibria in a complex climate model. J. Climate, 24, 9921012.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155.

  • Goodman, J. C., 2006: Through thick and thin: Marine and meteoric ice in a “Snowball Earth” climate. Geophys. Res. Lett., 33, L16701, doi:10.1029/2006GL026840.

    • Search Google Scholar
    • Export Citation
  • Goodman, J. C., and R. T. Pierrehumbert, 2003: Glacial flow of floating marine ice in “Snowball Earth.” J. Geophys. Res., 108, 3308, doi:10.1029/2002JC001471.

    • Search Google Scholar
    • Export Citation
  • Harland, W. B., 1964: Evidence of late Precambrian glaciation and its significance. Problems in Palaeoclimatology, A. E. M. Nairn, Ed., John Wiley & Sons, 119–149 and 180–184.

  • Hoffman, P., and D. Schrag, 2002: The Snowball Earth hypothesis: Testing the limits of global change. Terra Nova, 14, 129155, doi:10.1046/j.1365-3121.2002.00408.x.

    • Search Google Scholar
    • Export Citation
  • Hyde, W. T., T. J. Crowley, S. K. Baum, and W. R. Peltier, 2000: Neoproterozoic ‘Snowball Earth’ simulations with a coupled climate/ice-sheet model. Nature, 405, 425429.

    • Search Google Scholar
    • Export Citation
  • Jackett, D. R., and T. J. McDougall, 1995: Minimal adjustment of hydrographic profiles to achieve static stability. J. Atmos. Oceanic Technol., 12, 381389.

    • Search Google Scholar
    • Export Citation
  • Jenkins, G., and S. Smith, 1999: GCM simulations of Snowball Earth conditions during the late Proterozoic. Geophys. Res. Lett., 26, 22632266.

    • Search Google Scholar
    • Export Citation
  • Kirschvink, J. L., 1992: Late Proterozoic low-latitude glaciation: The Snowball Earth. The Proterozoic Biosphere, J. W. Schopf and C. Klein, Eds., Cambridge University Press, 51–52.

  • Knauth, L., 2005: Temperature and salinity history of the Precambrian ocean: Implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., 219, 5369.

    • Search Google Scholar
    • Export Citation
  • Langen, P. L., and V. A. Alexeev, 2004: Multiple equilibria and asymmetric climates in the CCM3 coupled to an oceanic mixed layer with thermodynamic sea ice. Geophys. Res. Lett.,31, L04201, doi:10.1029/2003GL019039.

  • Le Hir, G., G. Ramstein, Y. Donnadieu, and R. T. Pierrehumbert, 2007: Investigating plausible mechanisms to trigger a deglaciation from a hard Snowball Earth. C. R. Geosci., 339, 274287, doi:10.1016/j.crte.2006.09.002.

    • Search Google Scholar
    • Export Citation
  • Le Hir, G., Y. Donnadieu, G. Krinner, and G. Ramstein, 2010: Toward the Snowball Earth deglaciation… Climate Dyn., 35, 285297, doi:10.1007/s00382-010-0748-8.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., A. J. Weaver, S. T. Johnston, and M. Eby, 2003: Neoproterozoic “Snowball Earth”: Dynamic sea ice over a quiescent ocean. Paleoceanography, 18, 1092, doi:10.1029/2003PA000926.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., M. Eby, A. J. Weaver, S. Johnston, and R. Jacob, 2004: Global glaciation in the Neoproterozoic: Reconciling previous modelling results. Geophys. Res. Lett., 31, L08201, doi:10.1029/2004GL019725.

    • Search Google Scholar
    • Export Citation
  • Lewis, J. P., A. J. Weaver, and M. Eby, 2007: Snowball versus slushball Earth: Dynamic versus nondynamic sea ice? J. Geophys. Res., 112, C11014, doi:10.1029/2006JC004037.

    • Search Google Scholar
    • Export Citation
  • Li, D., and R. T. Pierrehumbert, 2011: Sea glacier flow and dust transport on Snowball Earth. Geophys. Res. Lett., 38, L17501, doi:10.1029/2011GL048991.

    • Search Google Scholar
    • Export Citation
  • Li, Z. X., and Coauthors, 2008: Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res., 160, 179210.

    • Search Google Scholar
    • Export Citation
  • Losch, M., 2008: Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res.,113, C08043, doi:10.1029/2007JC004368.

  • MacAyeal, D., 1997: EISMINT: Lessons in ice-sheet modeling. Tech. Rep., Department of Geophysical Sciences, University of Chicago, 428 pp.

  • Macdonald, F. A., and Coauthors, 2010: Calibrating the Cryogenian. Science, 327, 12411243.

  • Marotzke, J., and M. Botzet, 2007: Present-day and ice-covered equilibrium states in a comprehensive climate model. Geophys. Res. Lett.,34, L16704, doi:10.1029/2006GL028880.

  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey, 1997: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 5753–5766.

    • Search Google Scholar
    • Export Citation
  • McKay, C. P., 2000: Thickness of tropical ice and photosynthesis on a Snowball Earth. Geophys. Res. Lett., 27, 21532156.

  • Micheels, A., and M. Montenari, 2008: A Snowball Earth versus a slushball Earth: Results from Neoproterozoic climate modeling sensitivity experiments. Geosphere, 4, 401410.

    • Search Google Scholar
    • Export Citation
  • Morland, L., 1987: Unconfined ice-shelf flow. Dynamics of the West Antarctic Ice Sheet, C. van der Veen and J. Oerlemans, Eds., D. Reidel, 99–116.

  • Pierrehumbert, R. T., 2002: The hydrologic cycle in deep-time climate problems. Nature, 419, 191198.

  • Pierrehumbert, R. T., 2004: High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature, 429, 646649.

    • Search Google Scholar
    • Export Citation
  • Pierrehumbert, R. T., 2005: Climate dynamics of a hard Snowball Earth. J. Geophys. Res., 110, D01111, doi:10.1029/2004JD005162.

  • Pierrehumbert, R. T., D. S. Abbot, A. Voigt, and D. Koll, 2011: Climate of the Neoproterozoic. Annu. Rev. Earth Planet. Sci., 39, 417460.

    • Search Google Scholar
    • Export Citation
  • Pollack, H., S. Hurter, and J. Johnson, 1993: Heat flow from the Earth’s interior: Analysis of the global data set. Rev. Geophys., 31, 267280.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and J. Kasting, 2004: Climate–ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. The Extreme Proterozoic: Geology, Geochemistry, and Climate, Geophys. Monogr., Vol. 146, 91–105.

  • Pollard, D., and J. Kasting, 2005: Snowball Earth: A thin-ice solution with flowing sea glaciers. J. Geophys. Res., 110, C07010, doi:10.1029/2004JC002525.

    • Search Google Scholar
    • Export Citation
  • Pollard, D., and J. Kasting, 2006: Reply to comment by Stephen G. Warren and Richard E. Brandt on “Snowball Earth: A thin-ice solution with flowing sea glaciers”. J. Geophys. Res., 111, C09017, doi:10.1029/2006JC003488.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., and R. L. Jacob, 2004: Factors that inhibit Snowball Earth simulation. Paleoceanography, 19, PA4021, doi:10.1029/2004PA001056.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., R. T. Pierrehumbert, and R. L. Jacobs, 2001: Impact of ocean dynamics on the simulation of the Neoproterozoic “Snowball Earth.” Geophys. Res. Lett., 28, 15751578.

    • Search Google Scholar
    • Export Citation
  • Poulsen, C. J., R. L. Jacob, R. T. Pierrehumbert, and T. T. Huynh, 2002: Testing paleogeographic controls on a Neoproterozoic Snowball Earth. Geophys. Res. Lett., 29 (11), doi:10.1029/2001GL014352.

    • Search Google Scholar
    • Export Citation
  • Romanova, V., G. Lohmann, and K. Grosfeld, 2006: Effect of land albedo, CO2, orography, and oceanic heat transport on extreme climates. Climate Past, 2, 3142.

    • Search Google Scholar
    • Export Citation
  • Rose, B. E. J., and J. Marshall, 2009: Ocean heat transport, sea ice, and multiple climate states: Insights from energy balance models. J. Atmos. Sci., 66, 28282843.

    • Search Google Scholar
    • Export Citation
  • Schrag, D. P., and P. F. Hoffman, 2001: Life, geology and Snowball Earth. Nature, 409,306.

  • Schrag, D. P., R. A. Berner, P. F. Hoffman, and G. P. Halverson, 2002: On the initiation of a Snowball Earth. Geochem. Geophys. Geosyst., 3 (6), doi:10.1029/2001GC000219.

    • Search Google Scholar
    • Export Citation
  • Sellers, W., 1969: A global climate model based on the energy balance of the earth–atmosphere system. J. Appl. Meteor., 8, 392400.

  • Sohl, L. E., and M. A. Chandler, 2007: Reconstructing Neoproterozoic palaeoclimates using a combined data/modelling approach. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer Models and Biological Proxies, M. M. Williams et al., Eds., Geological Society, Micropalaeontological Society Special Publication 2, 61–80.

  • Stein, C. A., and S. Stein, 1992: A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359, 123129.

    • Search Google Scholar
    • Export Citation
  • Tziperman, E., I. Halevy, D. T. Johnston, A. H. Knoll, and D. P. Schrag, 2011: Biologically induced initiation of Neoproterozoic Snowball-Earth events. Proc. Natl. Acad. Sci. USA,108, 15 091–15 096, doi:10.1073/pnas.1016361108.

  • Tziperman, E., D. S. Abbot, Y. Ashkenazy, H. Gildor, D. Pollard, C. Schoof, and D. P. Schrag, 2012: Continental constriction and sea ice thickness in a Snowball-Earth scenario. J. Geophys. Res., 117, C05016, doi:10.1029/2011JC007730.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., and J. Marotzke, 2010: The transition from the present-day climate to a modern Snowball Earth. Climate Dyn., 35, 887905.

  • Voigt, A., and D. S. Abbot, 2012: Sea-ice dynamics strongly promote Snowball Earth initiation and destabilize tropical sea-ice margins. Climate Past, 8, 20792092.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., D. S. Abbot, R. T. Pierrehumbert, and J. Marotzke, 2011: Initiation of a Marinoan Snowball Earth in a state-of-the-art atmosphere–ocean general circulation model. Climate Past, 7, 249263, doi:10.5194/cp-7-249-2011.

    • Search Google Scholar
    • Export Citation
  • Voigt, A., I. M. Held, and J. Marotzke, 2012: Hadley cell dynamics in a virtually dry Snowball Earth atmosphere. J. Atmos. Sci., 69, 116128.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., and R. E. Brandt, 2006: Comment on “Snowball Earth: A thin-ice solution with flowing sea glaciers” by David Pollard and James F. Kasting. J. Geophys. Res., 111, C09016, doi:10.1029/2005JC003411.

    • Search Google Scholar
    • Export Citation
  • Warren, S. G., R. E. Brandt, T. C. Grenfell, and C. P. McKay, 2002: Snowball Earth: Ice thickness on the tropical ocean. J. Geophys. Res., 107, 3167, doi:10.1029/2001JC001123.

    • Search Google Scholar
    • Export Citation
  • Weertman, J., 1957: Deformation of floating ice shelves. J. Glaciol., 3, 3842.

  • Yang, J., W. R. Peltier, and Y. Hu, 2012a: The initiation of modern soft and hard Snowball Earth climates in CCSM4. Climate Past, 8, 907–918.

    • Search Google Scholar
    • Export Citation
  • Yang, J., W. P. Peltier, and Y. Hu, 2012b: The initiation of modern soft snowball and hard snowball climates in CCSM3. Part I: The influences of solar luminosity, CO2 concentration, and the sea ice/snow albedo parameterization. J. Climate, 25, 27112736.

    • Search Google Scholar
    • Export Citation
  • Yang, J., W. P. Peltier, and Y. Hu, 2012c: The initiation of modern “soft snowball” and “hard snowball” climates in CCSM3. Part II: Climate dynamic feedbacks. J. Climate, 25, 27372754.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 273 117 2
PDF Downloads 202 99 2

Ocean Circulation under Globally Glaciated Snowball Earth Conditions: Steady-State Solutions

View More View Less
  • 1 Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University, Midreshet Ben-Gurion, Israel
  • | 2 The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
  • | 3 Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
  • | 4 Department of Earth and Planetary Sciences and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
Restricted access

Abstract

Between ~750 and 635 million years ago, during the Neoproterozoic era, the earth experienced at least two significant, possibly global, glaciations, termed “Snowball Earth.” While many studies have focused on the dynamics and the role of the atmosphere and ice flow over the ocean in these events, only a few have investigated the related associated ocean circulation, and no study has examined the ocean circulation under a thick (~1 km deep) sea ice cover, driven by geothermal heat flux. Here, a thick sea ice–flow model coupled to an ocean general circulation model is used to study the ocean circulation under Snowball Earth conditions. The ocean circulation is first investigated under a simplified zonal symmetry assumption, and (i) strong equatorial zonal jets and (ii) a strong meridional overturning cell are found, limited to an area very close to the equator. The authors derive an analytic approximation for the latitude–depth ocean dynamics and find that the extent of the meridional overturning circulation cell only depends on the horizontal eddy viscosity and β (the change of the Coriolis parameter with latitude). The analytic approximation closely reproduces the numerical results. Three-dimensional ocean simulations, with reconstructed Neoproterozoic continental configuration, confirm the zonally symmetric dynamics and show additional boundary currents and strong upwelling and downwelling near the continents.

Corresponding author address: Yosef Ashkenazy, Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University, Midreshet Ben-Gurion, 84990, Israel. E-mail: ashkena@bgu.ac.il

Abstract

Between ~750 and 635 million years ago, during the Neoproterozoic era, the earth experienced at least two significant, possibly global, glaciations, termed “Snowball Earth.” While many studies have focused on the dynamics and the role of the atmosphere and ice flow over the ocean in these events, only a few have investigated the related associated ocean circulation, and no study has examined the ocean circulation under a thick (~1 km deep) sea ice cover, driven by geothermal heat flux. Here, a thick sea ice–flow model coupled to an ocean general circulation model is used to study the ocean circulation under Snowball Earth conditions. The ocean circulation is first investigated under a simplified zonal symmetry assumption, and (i) strong equatorial zonal jets and (ii) a strong meridional overturning cell are found, limited to an area very close to the equator. The authors derive an analytic approximation for the latitude–depth ocean dynamics and find that the extent of the meridional overturning circulation cell only depends on the horizontal eddy viscosity and β (the change of the Coriolis parameter with latitude). The analytic approximation closely reproduces the numerical results. Three-dimensional ocean simulations, with reconstructed Neoproterozoic continental configuration, confirm the zonally symmetric dynamics and show additional boundary currents and strong upwelling and downwelling near the continents.

Corresponding author address: Yosef Ashkenazy, Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University, Midreshet Ben-Gurion, 84990, Israel. E-mail: ashkena@bgu.ac.il
Save