• Berloff, P., A. M. Hogg, and W. Dewar, 2007: The turbulent oscillator: A mechanism of low-frequency variability of the wind-driven ocean gyres. J. Phys. Oceanogr., 37, 23632386.

    • Search Google Scholar
    • Export Citation
  • Bleck, R., 2002: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Modell., 4, 5588, doi:10.1016/S1463-5003(01)00012-9.

    • Search Google Scholar
    • Export Citation
  • Brodeau, L., B. Barnier, A.-M. Treguier, T. Penduff, and S. Gulev, 2010: An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Modell., 31, 88104, doi:10.1016/j.ocemod.2009.10.005.

    • Search Google Scholar
    • Export Citation
  • Czaja, A., and U. Hausmann, 2009: Observations of entry and exit of potential vorticity at the sea surface. J. Phys. Oceanogr., 39, 22802294.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., and W. K. Dewar, 2012: First-order scaling law for potential vorticity extraction due to wind. J. Phys. Oceanogr., 42, 13031312.

    • Search Google Scholar
    • Export Citation
  • Deremble, B., and W. K. Dewar, 2013: Volume and potential vorticity budgets of Eighteen Degree Water. J. Phys. Oceanogr., 43, 23092321.

    • Search Google Scholar
    • Export Citation
  • Eden, C., R. J. Greatbatch, and J. Willebrand, 2007: A diagnosis of thickness fluxes in an eddy-resolving model. J. Phys. Oceanogr., 37, 727742.

    • Search Google Scholar
    • Export Citation
  • Fox-Kemper, B., R. Ferrari, and J. Pedlosky, 2003: On the indeterminacy of rotational and divergent eddy fluxes. J. Phys. Oceanogr., 33, 478483.

    • Search Google Scholar
    • Export Citation
  • Gibou, F., R. P. Fedkiw, L.-T. Cheng, and M. Kang, 2002: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys., 176, 205227, doi:10.1006/jcph.2001.6977.

    • Search Google Scholar
    • Export Citation
  • Greatbatch, R. J., 1998: Exploring the relationship between eddy-induced transport velocity, vertical momentum transfer, and the isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422432.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., 2004: Fundamentals of Ocean Climate Models.Princeton University Press, 518 pp.

  • Haynes, P. H., and M. E. McIntyre, 1987: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci., 44, 828841.

    • Search Google Scholar
    • Export Citation
  • Jouanno, J., J. Sheinbaum, B. Barnier, J.-M. Molines, L. Debreu, and F. Lemarié, 2008: The mesoscale variability in the Caribbean Sea. Part I: Simulations and characteristics with an embedded model. Ocean Modell., 23, 82101, doi:10.1016/j.ocemod.2008.04.002.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace, Tech. Note 27, 367 pp.

  • Marshall, J. C., and A. J. G. Nurser, 1992: Fluid dynamics of oceanic thermocline ventilation. J. Phys. Oceanogr., 22, 583595.

  • Marshall, J. C., D. Jamous, and J. Nilsson, 2001: Entry, flux, and exit of potential vorticity in ocean circulation. J. Phys. Oceanogr., 31, 777789.

    • Search Google Scholar
    • Export Citation
  • Maze, G., and J. Marshall, 2011: Diagnosing the observed seasonal cycle of Atlantic subtropical mode water using potential vorticity and its attendant theorems. J. Phys. Oceanogr., 41, 19861999.

    • Search Google Scholar
    • Export Citation
  • Maze, G., J. Deshayes, J. Marshall, A.-M. Treguier, A. Chronis, and L. Vollmer, 2013: Surface vertical PV fluxes and subtropical mode water formation in an eddy-resolving numerical simulation. Deep-Sea Res. II,91, 128–138.

  • McDougall, T. J., 1989: Streamfunctions for the lateral velocity vector in a compressible ocean. J. Mar. Res., 47, 267284.

  • McDougall, T. J., 2003: Potential enthalpy: A conservative oceanic variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963.

    • Search Google Scholar
    • Export Citation
  • Olsina, O., N. Wienders, and W. K. Dewar, 2013: An estimate of the climatology and variability of Eighteen Degree Water potential vorticity forcing. Deep-Sea Res. II,91, 84–95, doi:10.1016/j.dsr2.2013.02.018.

  • Pares-Sierra, A., and G. K. Vallis, 1989: A fast semi-direct method for the numerical solution of non-separable elliptic equations in irregular domains. J. Comput. Phys., 82, 398412, doi:10.1016/0021-9991(89)90055-7.

    • Search Google Scholar
    • Export Citation
  • Peterson, K., and R. Greatbatch, 2001: Vorticity fluxes in shallow water ocean models. Atmos.–Ocean, 39, 114.

  • Polton, J. A., and D. P. Marshall, 2007: Overturning cells in the Southern Ocean and subtropical gyres. Ocean Sci., 3, 1730.

  • Rhines, P. B., and W. R. Young, 1982: Homogenization of potential vorticity in planetary gyres. J. Fluid Mech., 122, 347367, doi:10.1017/S0022112082002250.

    • Search Google Scholar
    • Export Citation
  • Schär, C., 1993: A generalization of Bernoulli’s theorem. J. Atmos. Sci., 50, 14371443.

  • Thomas, L. N., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466.

  • Treguier, A. M., 2008: Drakkar NATL12 model configuration for a 27-year simulation of the North Atlantic Ocean. Drakkar Rep. LPO-2008-05, 15 pp.

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 Re-Analysis. Quart. J. Roy. Meteor. Soc., 131, 29613012, doi:10.1256/qj.04.176.

  • Vallis, G. K., 2006: Atmospheric and Oceanic Fluid Dynamics.Cambridge University Press, 745 pp.

  • Wang, W., and R. X. Huang, 2004: Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34, 12671275.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 88 7
PDF Downloads 219 90 5

Potential Vorticity Budgets in the North Atlantic Ocean

View More View Less
  • 1 Department of Earth, Ocean and Atmospheric Science, The Florida State University, Tallahassee, Florida
Restricted access

Abstract

This paper focuses on potential vorticity (PV) budgets in the North Atlantic with an emphasis on the wind-driven subtropical gyre. Since PV is the key dynamical variable of the wind-driven circulation, these budgets are important to understand. PV is a conservative quantity on isopycnals and can only enter or exit through the boundaries, like the lateral topography or the surface. The latter fluxes are diagnosed and tested against the evolution of the PV content in an isopycnal layer. The former are computed using the Bernoulli function. The essential result is found for all the tested isopycnals, and the dominant feature of PV is recirculation, with very little added at the surface or the boundaries. Density coordinates are well suited to understanding PV circulation. A novel technique for computing the Bernoulli function is proposed. The Bernoulli function is governed by a simple elliptic equation and the solutions demonstrate the dominant contribution of PV advection.

Corresponding author address: Bruno Deremble, The Florida State University, 117 N. Woodward Ave., Tallahassee, FL 32306-4320. E-mail: bderemble@fsu.edu

Abstract

This paper focuses on potential vorticity (PV) budgets in the North Atlantic with an emphasis on the wind-driven subtropical gyre. Since PV is the key dynamical variable of the wind-driven circulation, these budgets are important to understand. PV is a conservative quantity on isopycnals and can only enter or exit through the boundaries, like the lateral topography or the surface. The latter fluxes are diagnosed and tested against the evolution of the PV content in an isopycnal layer. The former are computed using the Bernoulli function. The essential result is found for all the tested isopycnals, and the dominant feature of PV is recirculation, with very little added at the surface or the boundaries. Density coordinates are well suited to understanding PV circulation. A novel technique for computing the Bernoulli function is proposed. The Bernoulli function is governed by a simple elliptic equation and the solutions demonstrate the dominant contribution of PV advection.

Corresponding author address: Bruno Deremble, The Florida State University, 117 N. Woodward Ave., Tallahassee, FL 32306-4320. E-mail: bderemble@fsu.edu
Save