• Atlas, R., R. N. Hoffman, J. Ardizzone, S. M. Leidner, J. C. Jusem, D. K. Smith, and D. Gombos, 2011: A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157174.

    • Search Google Scholar
    • Export Citation
  • Bakun, A., and C. S. Nelson, 1991: The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. J. Phys. Oceanogr., 21, 18151834.

    • Search Google Scholar
    • Export Citation
  • Barron, C. N., A. B. Kara, H. E. Hurlburt, C. Rowley, and L. F. Smedstad, 2004: Sea surface height predictions from the global Navy Coastal Ocean Model during 1998–2001. J. Atmos. Oceanic Technol., 21, 18761893.

    • Search Google Scholar
    • Export Citation
  • Batteen, M. L., 1997: Wind-forced modeling studies of currents, meanders, and eddies in the California Current System. J. Geophys. Res., 102 (C1), 9851010.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and B. M. Hickey, 1984: Application of remote wind-forced coastal trapped wave theory to the Oregon and Washington coasts. J. Phys. Oceanogr., 14, 887903.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2006: World Ocean Database 2005. U.S. Government Printing Office, 190 pp.

  • Brink, K. H., 1989: Energy conservation in coastal-trapped wave calculations. J. Phys. Oceanogr., 19, 10111016.

  • Brink, K. H., 2010: Topographic rectification in a forced, dissipative, barotropic ocean. J. Mar. Res., 68, 337368.

  • Brink, K. H., 2011: Topographic rectification in a stratified ocean. J. Mar. Res., 69, 483499.

  • Brink, K. H., and D. C. Chapman, 1987: Programs for computing properties of coastal-trapped waves and wind-driven motions over the continental shelf and slope. 2nd ed. Woods Hole Oceanographic Institution Tech. Rep. WHOI-87-24, 119 pp.

  • Castro, C. G., F. P. Chavez, and C. A. Collins, 2001: Role of the California Undercurrent in the export of denitrified waters from the eastern tropical North Pacific. Global Biogeochem. Cycles, 15, 819830.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1987: Application of wind-forced, long, coastal-trapped wave theory along the California coast. J. Geophys. Res., 92 (C2), 17981816.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and S. Van Gorder, 1986: A method for estimating wind-driven frictional, time-dependent, stratified shelf and slope water flow. J. Phys. Oceanogr., 16, 10131028.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. J., and C. Shi, 1991: Critical frequencies at ocean boundaries. J. Geophys. Res., 96 (C6), 10 73110 738.

  • Collins, C. A., L. M. Ivanov, and O. V. Mel’nichenko, 2003: Seasonal variability of the California Undercurrent: Statistical analysis based on the trajectories of floats with neutral buoyancy. Phys. Oceanogr., 13, 135147.

    • Search Google Scholar
    • Export Citation
  • Csanady, G. T., 1978: The arrested topographic wave. J. Phys. Oceanogr., 8, 4762.

  • Csanady, G. T., 1985: “Pycnobathic” currents over the upper continental slope. J. Phys. Oceanogr., 15, 306315.

  • Emery, W. J., and R. E. Thomson, 2004: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 638 pp.

  • Federiuk, J., and J. S. Allen, 1995: Upwelling circulation on the Oregon continental shelf. Part II: Simulations and comparisons with observations. J. Phys. Oceanogr., 25, 18671889.

    • Search Google Scholar
    • Export Citation
  • Fox, D. N., W. J. Teague, C. N. Barron, M. R. Carnes, and C. M. Lee, 2002: The Modular Ocean Data Assimilation System (MODAS). J. Atmos. Oceanic Technol., 19, 240252.

    • Search Google Scholar
    • Export Citation
  • Garfield, N., C. A. Collins, R. G. Paquette, and E. Carter, 1999: Lagrangian exploration of the California Undercurrent, 1992–95. J. Phys. Oceanogr., 29, 560583.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610619.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., 1979: The California Current System—Hypotheses and facts. Prog. Oceanogr., 8, 191279.

  • Hickey, B. M., 1989: Patterns and processes of circulation over the Washington continental shelf and slope. Coastal Oceanography of Washington and Oregon, M. R. Landry and B. M. Hickey, Eds., Elsevier, 41–115.

  • Hickey, B. M., and N. E. Pola, 1983: The seasonal alongshore pressure gradient on the West Coast of the United States. J. Geophys. Res., 88 (C12), 76237633.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., R. E. Thomson, H. Yih, and P. H. LeBlond, 1991: Velocity and temperature fluctuations in a buoyancy-driven current off Vancouver Island. J. Geophys. Res.,96 (C6), 10 507–10 538.

  • Hickey, B. M., A. MacFadyen, W. Cochlan, R. Kudela, K. Bruland, and C. Trick, 2006: Evolution of chemical, biological, and physical water properties in the northern California Current in 2005: Remote or local wind forcing? Geophys. Res. Lett., 33, L22S02, doi:10.1029/2006GL026782.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., and Coauthors, 2010: River influences on shelf ecosystems: Introduction and synthesis. J. Geophys. Res., 115, C00B17, doi:10.1029/2009JC005452.

    • Search Google Scholar
    • Export Citation
  • Hill, A. E., B. M. Hickey, F. A. Shillington, P. T. Strub, K. H. Brink, E. D. Barton, and A. C. Thomas, 1998: Eastern ocean boundaries. The Sea: The Global Coastal Ocean, A. R. Robinson and K. H. Brink, Eds., Vol. 11, Regional Studies and Syntheses, John Wiley and Sons, 29–67.

  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430.

    • Search Google Scholar
    • Export Citation
  • Holloway, G., 1987: Systematic forcing of large-scale geophysical flows by eddy-topography interaction. J. Fluid Mech., 184, 463476.

  • Huthnance, J. M., 1984: Slope currents and JEBAR. J. Phys. Oceanogr., 14, 795810.

  • Huyer, A., J. A. Barth, P. M. Kosro, R. K. Shearman, and R. L. Smith, 1998: Upper-ocean water mass characteristics of the California Current, summer 1993. Deep-Sea Res. II, 45, 14111442.

    • Search Google Scholar
    • Export Citation
  • Johnson, E. R., 1991: The scattering at low frequencies of coastally trapped waves. J. Phys. Oceanogr., 21, 913932.

  • Kelly, K. A., M. J. Caruso, and J. A. Austin, 1993: Wind-forced variations in sea surface height in the northeast Pacific Ocean. J. Phys. Oceanogr., 23, 23922411.

    • Search Google Scholar
    • Export Citation
  • Kosro, P. M., W. T. Peterson, B. M. Hickey, R. K. Shearman, and S. D. Pierce, 2006: Physical versus biological spring transition: 2005. Geophys. Res. Lett.,33, L22S03, doi:10.1029/2006GL027072.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336.

  • Lathuilière, C., V. Echevin, M. Lévy, and G. Madec, 2010: On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem. J. Geophys. Res., 115, C09018, doi:10.1029/2009JC005827.

    • Search Google Scholar
    • Export Citation
  • Liu, K. K., and I. R. Kaplan, 1989: The eastern tropical Pacific as a source of 15N-enriched nitrate in seawater off southern California. Limnol. Oceanogr., 34, 820830.

    • Search Google Scholar
    • Export Citation
  • MacFadyen, A., B. M. Hickey, and W. Cochlan, 2008: Influences of the Juan de Fuca Eddy on circulation, nutrients, and phytoplankton production in the northern California Current System. J. Geophys. Res., 113, C08008, doi:10.1029/2007JC004412.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2003: Equilibrium structure and dynamics of the California Current System. J. Phys. Oceanogr., 33, 753783.

    • Search Google Scholar
    • Export Citation
  • McCreary, J. P., 1981: A linear stratified model of the coastal undercurrent. Philos. Trans. Roy. Soc. London, A302, 385413.

  • McCreary, J. P., and S.-Y. Chao, 1985: Three-dimensional shelf circulation along an eastern ocean boundary. J. Mar. Res., 43, 1336.

  • McCreary, J. P., P. K. Kundu, and S. Y. Chao, 1987: On the dynamics of the California Current System. J. Mar. Res., 45, 132.

  • Mellor, G. L., 1986: Numerical simulation and analysis of the mean coastal circulation off California. Cont. Shelf Res., 6, 689713.

  • Muraki, H., 1974: Poleward shift of the coastal upwelling region off the California coast. J. Oceanogr. Soc. Japan, 30, 4953.

  • Oey, L.-Y., 1999: A forcing mechanism for the poleward flow off the southern California coast. J. Geophys. Res.,104 (C6), 13 529–13 539.

  • Pares-Sierra, A., and J. J. O’Brien, 1989: The seasonal and interannual variability of the California Current System: A numerical model. J. Geophys. Res., 94 (C3), 31593180.

    • Search Google Scholar
    • Export Citation
  • Pelland, N. A., C. C. Eriksen, and C. M. Lee, 2013: Subthermocline eddies over the Washington continental slope as observed by Seagliders, 2003–09. J. Phys. Oceanogr.,43, 2025–2053.

  • Philander, S. G. H., and J.-H. Yoon, 1982: Eastern boundary currents and coastal upwelling. J. Phys. Oceanogr., 12, 862879.

  • Pierce, S. D., R. L. Smith, P. M. Kosro, J. A. Barth, and C. D. Wilson, 2000: Continuity of the poleward undercurrent along the eastern boundary of the mid-latitude North Pacific. Deep-Sea Res., 47, 811829.

    • Search Google Scholar
    • Export Citation
  • Pringle, J. M., and E. P. Dever, 2009: Dynamics of wind-driven upwelling and relaxation between Monterey Bay and Point Arena: Local-, regional-, and gyre-scale controls. J. Geophys. Res., 114, C07003, doi:10.1029/2008JC005016.

    • Search Google Scholar
    • Export Citation
  • Reid, J. L., and A. W. Mantyla, 1976: The effect of the geostrophic flow upon coastal sea elevations in the northern North Pacific Ocean. J. Geophys. Res., 81 (18), 31003110.

    • Search Google Scholar
    • Export Citation
  • Rhodes, R., and Coauthors, 2002: Navy real-time global modeling systems. Oceanography, 15, 29–43.

  • Shulman, I., and Coauthors, 2007: Modeling of upwelling/relaxation events with the Navy Coastal Ocean Model. J. Geophys. Res.,112, C06023, doi:10.1029/2006JC003946.

  • Shulman, I., S. Anderson, C. Rowley, S. DeRada, J. Doyle, and S. Ramp, 2010: Comparisons of upwelling and relaxation events in the Monterey Bay area. J. Geophys. Res.,115, C06016, doi:10.1029/2009JC005483.

  • Siedlecki, S. A., A. Mahadevan, and D. E. Archer, 2012: Mechanism for export of sediment-derived iron in an upwelling regime. Geophys. Res. Lett., 39, L03601, doi:10.1029/2011GL050366.

    • Search Google Scholar
    • Export Citation
  • Smith, R. L., A. Huyer, and J. Fleischbein, 2001: The coastal ocean off Oregon from 1961 to 2000: Is there evidence of climate change or only of Los Niños? Prog. Oceanogr., 49, 6393.

    • Search Google Scholar
    • Export Citation
  • Suginohara, N., 1974: Onset of coastal upwelling in a two-layer ocean by wind stress with longshore variation. J. Oceanogr., 30, 2333, doi:10.1007/BF02112888.

    • Search Google Scholar
    • Export Citation
  • Suginohara, N., 1982: Coastal upwelling: Onshore–offshore circulation, equatorward coastal jet and poleward undercurrent over a continental shelf-slope. J. Phys. Oceanogr., 12, 272284.

    • Search Google Scholar
    • Export Citation
  • Suginohara, N., and Y. Kitamura, 1984: Long-term coastal upwelling over a continental shelf–slope. J. Phys. Oceanogr., 14, 10951104.

    • Search Google Scholar
    • Export Citation
  • Swartzman, G., B. Hickey, P. M. Kosro, and C. Wilson, 2005: Poleward and equatorward currents in the Pacific eastern boundary current in summer 1995 and 1998 and their relationship to the distribution of euphausiids. Deep-Sea Res. II, 52, 7388.

    • Search Google Scholar
    • Export Citation
  • Thomson, R. E., and M. V. Krassovski, 2010: Poleward reach of the California Undercurrent extension. J. Geophys. Res., 115, C09027, doi:10.1029/2010JC006280.

    • Search Google Scholar
    • Export Citation
  • Todd, R. E., D. L. Rudnick, M. R. Mazloff, R. E. Davis, and B. D. Cornuelle, 2011: Poleward flows in the southern California Current System: Glider observations and numerical simulation. J. Geophys. Res., 116, C02026, doi:10.1029/2010JC006536.

    • Search Google Scholar
    • Export Citation
  • Wang, D. P., and C. N. K. Mooers, 1976: Coastal-trapped waves in a continuously stratified ocean. J. Phys. Oceanogr., 6, 853863.

  • Werner, F. E., and B. M. Hickey, 1983: The role of a longshore pressure gradient in Pacific Northwest coastal dynamics. J. Phys. Oceanogr., 13, 395410.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J. L., and D. C. Chapman, 1990: Scattering of coastal-trapped waves by irregularities in coastline and topography. J. Phys. Oceanogr., 20, 396421.

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., 1981: On the validation of models. Phys. Geogr., 2, 184194.

  • Yoshida, K., 1967: Circulation in the eastern tropical oceans with special references to upwelling and undercurrents. Japanese J. Geophys., 4, 175.

    • Search Google Scholar
    • Export Citation
  • Yoshida, K., 1980: The coastal undercurrent—A role of longshore scales in coastal upwelling dynamics. Prog. Oceanogr., 9, 83131.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1094 477 32
PDF Downloads 421 200 12

Coastal Trapped Waves, Alongshore Pressure Gradients, and the California Undercurrent*

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 University of Washington, Seattle, Washington
  • | 3 Naval Research Laboratory, Stennis Space Center, Mississippi
  • | 4 Institute of Ocean Sciences, Sidney, British Columbia, Canada
Restricted access

Abstract

The California Undercurrent (CUC), a poleward-flowing feature over the continental slope, is a key transport pathway along the west coast of North America and an important component of regional upwelling dynamics. This study examines the poleward undercurrent and alongshore pressure gradients in the northern California Current System (CCS), where local wind stress forcing is relatively weak. The dynamics of the undercurrent are compared in the primitive equation Navy Coastal Ocean Model and a linear coastal trapped wave model. Both models are validated using hydrographic data and current-meter observations in the core of the undercurrent in the northern CCS. In the linear model, variability in the predominantly equatorward wind stress along the U.S. West Coast produces episodic reversals to poleward flow over the northern CCS slope during summer. However, reproducing the persistence of the undercurrent during late summer requires additional incoming energy from sea level variability applied south of the region of the strongest wind forcing. The relative importance of the barotropic and baroclinic components of the modeled alongshore pressure gradient changes with latitude. In contrast to the southern and central portions of the CCS, the baroclinic component of the alongshore pressure gradient provides the primary poleward force at CUC depths over the northern CCS slope. At time scales from weeks to months, the alongshore pressure gradient force is primarily balanced by the Coriolis force associated with onshore flow.

Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Contribution Number 769, ECOHAB Pacific Northwest Contribution Number 33, and Pacific Northwest Toxin Contribution Number 8.

Corresponding author address: Thomas P. Connolly, Woods Hole Oceanographic Institution, MS 21, 266 Woods Hole Road, Woods Hole, MA 02543-1050. E-mail: tconnolly@whoi.edu

Abstract

The California Undercurrent (CUC), a poleward-flowing feature over the continental slope, is a key transport pathway along the west coast of North America and an important component of regional upwelling dynamics. This study examines the poleward undercurrent and alongshore pressure gradients in the northern California Current System (CCS), where local wind stress forcing is relatively weak. The dynamics of the undercurrent are compared in the primitive equation Navy Coastal Ocean Model and a linear coastal trapped wave model. Both models are validated using hydrographic data and current-meter observations in the core of the undercurrent in the northern CCS. In the linear model, variability in the predominantly equatorward wind stress along the U.S. West Coast produces episodic reversals to poleward flow over the northern CCS slope during summer. However, reproducing the persistence of the undercurrent during late summer requires additional incoming energy from sea level variability applied south of the region of the strongest wind forcing. The relative importance of the barotropic and baroclinic components of the modeled alongshore pressure gradient changes with latitude. In contrast to the southern and central portions of the CCS, the baroclinic component of the alongshore pressure gradient provides the primary poleward force at CUC depths over the northern CCS slope. At time scales from weeks to months, the alongshore pressure gradient force is primarily balanced by the Coriolis force associated with onshore flow.

Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Contribution Number 769, ECOHAB Pacific Northwest Contribution Number 33, and Pacific Northwest Toxin Contribution Number 8.

Corresponding author address: Thomas P. Connolly, Woods Hole Oceanographic Institution, MS 21, 266 Woods Hole Road, Woods Hole, MA 02543-1050. E-mail: tconnolly@whoi.edu
Save