• Carmack, E., W. Williams, S. Zimmermann, and F. McLaughlin, 2012: The Arctic Ocean warms from below. Geophys. Res. Lett., 39, L07604, doi:10.1029/2012GL050890.

    • Search Google Scholar
    • Export Citation
  • Carpenter, J., and M.-L. Timmermans, 2012: Temperature steps in salty seas. Phys. Today, 63, 6667.

  • Carpenter, J., T. Sommer, and A. Wüest, 2012a: Simulations of a double-diffusive interface in the diffusive convection regime. J. Fluid Mech., 711, 411436, doi:10.1017/jfm.2012.399.

    • Search Google Scholar
    • Export Citation
  • Carpenter, J., T. Sommer, and A. Wüest, 2012b: Stability of a double-diffusive interface in the diffusive convection regime. J. Phys. Oceanogr., 42, 840854.

    • Search Google Scholar
    • Export Citation
  • Flanagan, J., A. Lefler, and T. Radko, 2013: Heat transport through diffusive interfaces. Geophys. Res. Lett., 40, 24662470, doi:10.1002/grl.50440.

    • Search Google Scholar
    • Export Citation
  • Howard, S. L., J. Hyatt, and L. Padman, 2004: Mixing in the pycnocline over the western Antarctic Peninsula shelf during Southern Ocean GLOBEC. Deep-Sea Res. II, 51, 19651979, doi:10.1016/j.dsr2.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Ivey, G., K. Winters, and J. Koseff, 2008: Density stratification, turbulence, but how much mixing? Annu. Rev. Fluid Mech., 40, 169184.

    • Search Google Scholar
    • Export Citation
  • Johnson, H. L., and C. Garrett, 2004: Effects of noise on Thorpe scales and run lengths. J. Phys. Oceanogr., 34, 23592372.

  • Julien, K., E. Knobloch, A. Rubio, and G. Vasil, 2012: Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett., 109, 254503, doi:10.1103/PhysRevLett.109.254503.

    • Search Google Scholar
    • Export Citation
  • Kelley, D., 1987: The influence of planetary rotation on oceanic double-diffusive fluxes. J. Mar. Res., 45, 829841.

  • Kelley, D., 1990: Fluxes through diffusive staircases: A new formulation. J. Geophys. Res., 95, 33653371.

  • Kelley, D., H. Fernando, A. Gargett, J. Tanny, and E. Özsoy, 2003: The diffusive regime of double-diffusive convection. Prog. Oceanogr., 56, 461481.

    • Search Google Scholar
    • Export Citation
  • King, E. M., S. Stellmach, J. Noir, U. Hansen, and J. M. Aurnou, 2009: Boundary layer control of rotating convection systems. Nature, 457, 301304, doi:10.1038/nature07647.

    • Search Google Scholar
    • Export Citation
  • King, E. M., S. Stellmach, and J. Aurnou, 2012: Heat transfer by rapidly rotating Rayleigh–Bénard convection. J. Fluid Mech., 691, 568582, doi:10.1017/jfm.2011.493.

    • Search Google Scholar
    • Export Citation
  • Kunnen, R. P. J., H. J. H. Clercx, and B. J. Geurts, 2006: Heat flux intensification by vortical flow localization in rotating convection. Phys. Rev. E, 74, 056306, doi:10.1103/PhysRevE.74.056306.

    • Search Google Scholar
    • Export Citation
  • Lenn, Y.-D., and Coauthors, 2009: Vertical mixing at intermediate depths in the Arctic boundary current. Geophys. Res. Lett., 36, L05601, doi:10.1029/2008GL036792.

    • Search Google Scholar
    • Export Citation
  • Linden, P., and T. Shirtcliffe, 1978: The diffusive interface in double-diffusive convection. J. Fluid Mech., 87, 417432.

  • Marmorino, G., and D. Caldwell, 1976: Heat and salt transport through a diffusive thermohaline interface. Deep-Sea Res., 23, 5967.

  • Padman, L., and T. Dillon, 1987: Vertical heat fluxes through the Beaufort Sea thermohaline staircase. J. Geophys. Res., 92, 10 79910 806.

    • Search Google Scholar
    • Export Citation
  • Padman, L., and T. Dillon, 1989: Thermal microstructure and internal waves in the Canada Basin diffusive staircase. Deep-Sea Res., 36, 531542.

    • Search Google Scholar
    • Export Citation
  • Polyakov, I. V., A. V. Pnyushkov, R. Rember, V. V. Ivanov, Y.-D. Lenn, L. Padman, and E. Carmack, 2012: Mooring-based observations of double-diffusive staircases over the Laptev Sea slope. J. Phys. Oceanogr., 42, 95109.

    • Search Google Scholar
    • Export Citation
  • Rossby, H. T., 1969: A study of Bénard convection with and without rotation. J. Fluid Mech., 36, 309335.

  • Schmid, M., M. Busbridge, and A. Wüest, 2010: Double-diffusive convection in Lake Kivu. Limnol. Oceanogr., 55, 225238.

  • Schmitt, R. W., 1994: Double diffusion in oceanography. Annu. Rev. Fluid Mech., 26, 255285.

  • Schmitt, R. W., and R. B. Lambert, 1979: The effects of rotation on salt fingers. J. Fluid Mech., 90, 449463.

  • Schmitz, S. and A. Tilgner, 2009: Heat transport in rotating convection without Ekman layers. Phys. Rev. E,80, 015305, doi:10.1103/PhysRevE.80.015305.

  • Sirevaag, A., and I. Fer, 2012: Vertical heat transfer in the Arctic Ocean: The role of double-diffusive mixing. J. Geophys. Res., 117, C07010, doi:10.1029/2012JC007910.

    • Search Google Scholar
    • Export Citation
  • Sommer, T., J. Carpenter, M. Schmid, R. G. Lueck, M. Schurter, and A. Wüest, 2013a: Interface structure and flux laws in a natural double-diffusive layering. J. Geophys. Res., 118, doi:10.1002/2013JC009166.

    • Search Google Scholar
    • Export Citation
  • Sommer, T., J. Carpenter, M. Schmid, R. G. Lueck, and A. Wüest, 2013b: Revisiting microstructure sensor responses with implications for double-diffusive fluxes. J. Atmos. Oceanic Technol., 30, 19071923.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., C. Garrett, and E. Carmack, 2003: The thermohaline structure and evolution of the deep waters in the Canada Basin, Arctic Ocean. Deep-Sea Res. I, 50, 13051321.

    • Search Google Scholar
    • Export Citation
  • Timmermans, M.-L., J. Toole, R. Krishfield, and P. Winsor, 2008: Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. J. Geophys. Res., 113, C00A02, doi:10.1029/2008JC004829.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 1965: The coupled turbulent transports of salt and heat across a sharp density interface. Int. J. Heat Mass Transfer, 8, 759767.

    • Search Google Scholar
    • Export Citation
  • Turner, J. S., 2010: The melting of ice in the Arctic Ocean: The influence of double-diffusive transport of heat from below. J. Phys. Oceanogr., 40, 249256.

    • Search Google Scholar
    • Export Citation
  • Winters, K., and E. D’Asaro, 1996: Diascalar flux and the rate of fluid mixing. J. Fluid Mech., 317, 179193.

  • Winters, K., J. MacKinnon, and B. Mills, 2004: A spectral model for process studies of rotating, density-stratified flows. J. Atmos. Oceanic Technol., 21, 6994.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 164 50 7
PDF Downloads 99 41 8

Does Rotation Influence Double-Diffusive Fluxes in Polar Oceans?

View More View Less
  • 1 Department of Geology and Geophysics, Yale University, New Haven, Connecticut
Restricted access

Abstract

The diffusive (or semiconvection) regime of double-diffusive convection (DDC) is widespread in the polar oceans, generating “staircases” consisting of high-gradient interfaces of temperature and salinity separated by convectively mixed layers. Using two-dimensional direct numerical simulations, support is provided for a previous theory that rotation can influence DDC heat fluxes when the thickness of the thermal interface sufficiently exceeds that of the Ekman layer. This study finds, therefore, that the earth’s rotation places constraints on small-scale vertical heat fluxes through double-diffusive layers. This leads to departures from laboratory-based parameterizations that can significantly change estimates of Arctic Ocean heat fluxes in certain regions, although most of the upper Arctic Ocean thermocline is not expected to be dominated by rotation.

Corresponding author address: Jeff Carpenter, Institute for Coastal Research, Helmholtz Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht 21502, Germany. E-mail: jeff.carpenter@hzg.de

Abstract

The diffusive (or semiconvection) regime of double-diffusive convection (DDC) is widespread in the polar oceans, generating “staircases” consisting of high-gradient interfaces of temperature and salinity separated by convectively mixed layers. Using two-dimensional direct numerical simulations, support is provided for a previous theory that rotation can influence DDC heat fluxes when the thickness of the thermal interface sufficiently exceeds that of the Ekman layer. This study finds, therefore, that the earth’s rotation places constraints on small-scale vertical heat fluxes through double-diffusive layers. This leads to departures from laboratory-based parameterizations that can significantly change estimates of Arctic Ocean heat fluxes in certain regions, although most of the upper Arctic Ocean thermocline is not expected to be dominated by rotation.

Corresponding author address: Jeff Carpenter, Institute for Coastal Research, Helmholtz Zentrum Geesthacht, Max-Planck-Strasse 1, Geesthacht 21502, Germany. E-mail: jeff.carpenter@hzg.de
Save