Submesoscale Cold Filaments in the Gulf Stream

Jonathan Gula Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by Jonathan Gula in
Current site
Google Scholar
PubMed
Close
,
M. Jeroen Molemaker Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by M. Jeroen Molemaker in
Current site
Google Scholar
PubMed
Close
, and
James C. McWilliams Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Search for other papers by James C. McWilliams in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A set of realistic, very high-resolution simulations is made for the Gulf Stream region using the oceanic model Regional Oceanic Modeling System (ROMS) to study the life cycle of the intense submesoscale cold filaments that form on the subtropical gyre, interior wall of the Gulf Stream. The surface buoyancy gradients and ageostrophic secondary circulations intensify in response to the mesoscale strain field as predicted by the theory of filamentogenesis. It can be understood in terms of a dual frontogenetic process, along the lines understood for a single front. There is, however, a stronger secondary circulation due to the amplification at the center of a cold filament. Filament dynamics in the presence of a mixed layer are not adequately described by the classical thermal wind balance. The effect of vertical mixing of momentum due to turbulence in the surface layer is of the same order of magnitude as the pressure gradient and Coriolis force and contributes equally to a so-called turbulent thermal wind balance. Filamentogenesis is disrupted by vigorous submesoscale instabilities. The cause of the instability is the lateral shear as energy production by the horizontal Reynolds stress is the primary fluctuation source during the process; this contrasts with the usual baroclinic instability of submesoscale surface fronts. The filaments are lines of strong oceanic surface convergence as illustrated by the release of Lagrangian parcels in the Gulf Stream. Diabatic mixing is strong as parcels move across the filaments and downwell into the pycnocline. The life cycle of a filament is typically a few days in duration, from intensification to quasi stationarity to instability to dissipation.

Corresponding author address: Jonathan Gula, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1567. E-mail: gula@atmos.ucla.edu

This article is included in the Ocean Turbulence Special Collection.

Abstract

A set of realistic, very high-resolution simulations is made for the Gulf Stream region using the oceanic model Regional Oceanic Modeling System (ROMS) to study the life cycle of the intense submesoscale cold filaments that form on the subtropical gyre, interior wall of the Gulf Stream. The surface buoyancy gradients and ageostrophic secondary circulations intensify in response to the mesoscale strain field as predicted by the theory of filamentogenesis. It can be understood in terms of a dual frontogenetic process, along the lines understood for a single front. There is, however, a stronger secondary circulation due to the amplification at the center of a cold filament. Filament dynamics in the presence of a mixed layer are not adequately described by the classical thermal wind balance. The effect of vertical mixing of momentum due to turbulence in the surface layer is of the same order of magnitude as the pressure gradient and Coriolis force and contributes equally to a so-called turbulent thermal wind balance. Filamentogenesis is disrupted by vigorous submesoscale instabilities. The cause of the instability is the lateral shear as energy production by the horizontal Reynolds stress is the primary fluctuation source during the process; this contrasts with the usual baroclinic instability of submesoscale surface fronts. The filaments are lines of strong oceanic surface convergence as illustrated by the release of Lagrangian parcels in the Gulf Stream. Diabatic mixing is strong as parcels move across the filaments and downwell into the pycnocline. The life cycle of a filament is typically a few days in duration, from intensification to quasi stationarity to instability to dissipation.

Corresponding author address: Jonathan Gula, Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90095-1567. E-mail: gula@atmos.ucla.edu

This article is included in the Ocean Turbulence Special Collection.

Save
  • Barnier, B., L. Siefried, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analyses. J. Mar. Syst., 6, 363380, doi:10.1016/0924-7963(94)00034-9.

    • Search Google Scholar
    • Export Citation
  • Beckmann, A., and D. Haidvogel, 1993: Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. J. Phys. Oceanogr., 23, 17361753, doi:10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boccaletti, G., R. Ferrari, and B. Fox-Kemper, 2007: Mixed layer instabilities and restratification. J. Phys. Oceanogr., 37, 22282250, doi:10.1175/JPO3101.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008a: Mesoscale to submesoscale transition in the California Current System. Part I: Flow structure, eddy flux, and observational tests. J. Phys. Oceanogr., 38, 2943, doi:10.1175/2007JPO3671.1.

    • Search Google Scholar
    • Export Citation
  • Capet, X., J. McWilliams, M. Molemaker, and A. Shchepetkin, 2008b: Mesoscale to submesoscale transition in the California Current System. Part II: Frontal processes. J. Phys. Oceanogr., 38, 4464, doi:10.1175/2007JPO3672.1.

    • Search Google Scholar
    • Export Citation
  • Carton, J., and B. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Conkright, M., R. Locarnini, H. Garcia, T. O’Brien, T. Boyer, C. Stephens, and J. Antonov, 2002: World Ocean Atlas 2001: Objective Analyses, Data Statistics and Figures. National Oceanographic Center Internal Tech. Rep. 17, CD-ROM.

  • Dritschel, D., P. Haynes, M. Juckes, and T. Shepherd, 1991: The stability of a two-dimensional vorticity filament under uniform strain. J. Fluid Mech., 230, 647665, doi:10.1017/S0022112091000915.

    • Search Google Scholar
    • Export Citation
  • Elhmaidi, D., A. Provenzale, T. Lili, and A. Babiano, 2004: Stability of two-dimensional vorticity filaments. Phys. Lett.,333A, 85–90, doi:10.1016/j.physleta.2004.10.033.

  • Garrett, C., and J. Loder, 1981: Dynamical aspects of shallow sea fronts. Philos. Trans. Roy. Soc. London, B302, 563581, doi:10.1098/rsta.1981.0183.

    • Search Google Scholar
    • Export Citation
  • Harvey, B., and M. Ambaum, 2010: Instability of surface-temperature filaments in strain and shear. Quart. J. Roy. Meteor. Soc., 136, 15061513, doi:10.1002/qj.651.

    • Search Google Scholar
    • Export Citation
  • Held, I., R. Pierrehumbert, S. Garner, and K. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 120, doi:10.1017/S0022112095000012.

    • Search Google Scholar
    • Export Citation
  • Holland, W., J. Chow, and F. Bryan, 1998: Application of a third-order upwind scheme in the NCAR ocean model. J. Climate, 11, 14871493, doi:10.1175/1520-0442(1998)011<1487:AOATOU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J., 1982: The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J. Atmos. Sci., 39, 791799, doi:10.1175/1520-0469(1982)039<0791:TROGWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Inoue, R., R. Harcourt, and M. Gregg, 2010: Mixing rates across the Gulf Stream, Part 2: Implications for nonlocal parameterization of vertical fluxes in the surface boundary layers. J. Mar. Res., 68, 673698, doi:10.1357/002224011795977626.

    • Search Google Scholar
    • Export Citation
  • Juckes, M., 1995: Instability of surface and upper-tropospheric shear lines. J. Atmos. Sci., 52, 32473262, doi:10.1175/1520-0469(1995)052<3247:IOSAUT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., and P. Klein, 2006: Impact of the small-scale elongated filaments on the oceanic vertical pump. J. Mar. Res., 64, 835851, doi:10.1357/002224006779698369.

    • Search Google Scholar
    • Export Citation
  • Large, W., and P. Gent, 1999: Validation of vertical mixing in an equatorial ocean model using large eddy simulations and observations. J. Phys. Oceanogr., 29, 449–464, doi:10.1175/1520-0485(1999)029<0449:VOVMIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. M. Williams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Large, W., G. Danabasoglu, S. Doney, and J. M. Williams, 1997: Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. J. Phys. Oceanogr., 27, 24182447, doi:10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, T., J. Yoder, and L. Atkinson, 1991: Gulf Stream frontal eddy influence on productivity of the southeast U.S. continental shelf. J. Geophys. Res., 96, 22 19122 205, doi:10.1029/91JC02450.

    • Search Google Scholar
    • Export Citation
  • Lehahn, Y., F. d’Ovidio, M. Lévy, and E. Heifetz, 2007: Stirring of the northeast Atlantic spring bloom: A Lagrangian analysis based on multisatellite data. J. Geophys. Res.,112, C08005, doi:10.1029/2006JC003927.

  • Lemarié, F., J. Kurian, A. Shchepetkin, M. Molemaker, F. Colas, and J. McWilliams, 2012: Are there inescapable issues prohibiting the use of terrain-following coordinates in climate models? Ocean Modell., 42, 5779, doi:10.1016/j.ocemod.2011.11.007.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., 2006: Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? Ocean Modell., 14, 222240, doi:10.1016/j.ocemod.2006.05.005.

    • Search Google Scholar
    • Export Citation
  • Mahadevan, A., and A. Tandon, 2006: An analysis of mechanisms for submesoscale vertical motion at ocean fronts. Ocean Modell., 14, 241256, doi:10.1016/j.ocemod.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Mason, E., M. Molemaker, A. Shchepetkin, F. Colas, J. McWilliams, and P. Sangra, 2010: Procedures for offline grid nesting in regional ocean models. Ocean Modell., 35, 115, doi:10.1016/j.ocemod.2010.05.007.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J., and M. Molemaker, 2011: Baroclinic frontal arrest: A sequel to unstable frontogenesis. J. Phys. Oceanogr., 41, 601619, doi:10.1175/2010JPO4493.1.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J., I. Yavneh, M. Cullen, and P. Gent, 1998: The breakdown of large-scale flows in rotating, stratified fluids. Phys. Fluids, 10, 31783184, doi:10.1063/1.869844.

    • Search Google Scholar
    • Export Citation
  • McWilliams, J., F. Colas, and M. Molemaker, 2009a: Cold filamentary intensification and oceanic surface convergence lines. Geophys. Res. Lett.,36, L18602, doi:10.1029/2009GL039402.

  • McWilliams, J., M. Molemaker, and E. Olafsdottir, 2009b: Linear fluctuation growth during frontogenesis. J. Phys. Oceanogr., 39, 31113129, doi:10.1175/2009JPO4186.1.

    • Search Google Scholar
    • Export Citation
  • Mensa, J., Z. Garraffo, A. Griffa, T. Ozgokmen, A. Haza, and M. Veneziani, 2013: Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn., 63,923941, doi:10.1007/s10236-013-0633-1.

    • Search Google Scholar
    • Export Citation
  • Molemaker, M., J. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. J. Fluid Mech., 654, 3563, doi:10.1017/S0022112009993272.

    • Search Google Scholar
    • Export Citation
  • Penven, P., L. Debreu, P. Marchesiello, and J. McWilliams, 2006: Application of the ROMS embedding procedure for the central California upwelling system. Ocean Modell., 12, 157187, doi:10.1016/j.ocemod.2005.05.002.

    • Search Google Scholar
    • Export Citation
  • Plougonven, R., and C. Snyder, 2007: Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles. J. Atmos. Sci., 64, 25022520, doi:10.1175/JAS3953.1.

    • Search Google Scholar
    • Export Citation
  • Ponte, A., P. Klein, X. Capet, P.-Y. Le Traon, B. Chapron, and P. Lherminier, 2013: Diagnosing surface mixed layer dynamics from high-resolution satellite observations: Numerical insights. J. Phys. Oceanogr., 43, 13451355, doi:10.1175/JPO-D-12-0136.1.

    • Search Google Scholar
    • Export Citation
  • Risien, C., and D. Chelton, 2008: A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 23792413, doi:10.1175/2008JPO3881.1.

    • Search Google Scholar
    • Export Citation
  • Roullet, G., and P. Klein, 2010: Cyclone-anticyclone asymmetry in geophysical turbulence. Phys. Rev. Lett.,104, 218501, doi:10.1103/PhysRevLett.104.218501.

  • Shchepetkin, A., and J. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate ocean model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2008: Computational kernel algorithms for fine-scale, multiprocess, longtime oceanic simulations. Handb. Numer. Anal., 14, 121183, doi:10.1016/S1570-8659(08)01202-0.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2011: Accurate Boussinesq modeling with a practical, “stiffened” equation of state. Ocean Modell., 38, 4170, doi:10.1016/j.ocemod.2011.01.010.

    • Search Google Scholar
    • Export Citation
  • Shcherbina, A., E. D’Asaro, C. Lee, J. Klymak, M. Molemaker, and J. McWilliams, 2013: Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field. Geophys. Res. Lett., 40, 4706–4711, doi:10.1002/grl.50919.

    • Search Google Scholar
    • Export Citation
  • Silva, A. D., C. Young, and S. Levitus, 1994: Algorithms and Procedures. Vol. 1, Atlas of Surface Marine Data 1994, NOAA Atlas NESDIS 6, 74 pp.

  • Smith, W., and D. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19571962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., 2005: Destruction of potential vorticity by winds. J. Phys. Oceanogr., 35, 24572466, doi:10.1175/JPO2830.1.

  • Thomas, L., and C. Lee, 2005: Intensification of ocean fronts by down-front winds. J. Phys. Oceanogr., 35, 10861102, doi:10.1175/JPO2737.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, L., J. Taylor, R. Ferrari, and T. Joyce, 2013: Symmetric instability in the Gulf Stream. Deep-Sea Res., 91, 96110, doi:10.1016/j.dsr2.2013.02.025.

    • Search Google Scholar
    • Export Citation
  • Webb, D., B. de Cuevas, and C. Richmond, 1998: Improved advection schemes for ocean models. J. Atmos. Oceanic Technol., 15, 11711187, doi:10.1175/1520-0426(1998)015<1171:IASFOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhai, X., R. Greatbatch, and J.-D. Kohlmann, 2008: On the seasonal variability of eddy kinetic energy in the Gulf Stream region. Geophys. Res. Lett., 35, L24609, doi:10.1029/2008GL036412.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8637 5041 2194
PDF Downloads 3180 698 77