• Akaike, H., 1974: New look at statistical-model identification. IEEE Trans. Autom. Control, 19, 716723, doi:10.1109/tac.1974.1100705.

    • Search Google Scholar
    • Export Citation
  • Breaker, L. C., 2007: A closer look at regime shifts based on coastal observations along the eastern boundary of the North Pacific. Cont. Shelf Res., 27, 22502277, doi:10.1016/j.csr.2007.05.018.

    • Search Google Scholar
    • Export Citation
  • Breaker, L. C., and S. J. Flora, 2009: Expressions of 1976–1977 and 1988–1989 regime shifts in sea-surface temperature off Southern California and Hawai‘i. Pac. Sci., 63, 3960, doi:10.2984/1534-6188(2009)63[39:EOARSI]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bromirski, P. D., D. R. Cayan, J. Helly, and P. Wittmann, 2013: Wave power variability and trends across the North Pacific. J. Geophys. Res. Oceans, 118, 63296348, doi:10.1002/2013JC009189.

    • Search Google Scholar
    • Export Citation
  • Brown, R. L., J. Durbin, and J. M. Evans, 1975: Techniques for testing the constancy of regression relationships over time. J. Roy. Stat. Soc., 37B, 149163.

    • Search Google Scholar
    • Export Citation
  • Chang, G., and M. S. Twardowski, 2011: Effects of physical forcing and particle characteristics on underwater imaging performance. J. Geophys. Res., 116, C00H03, doi:10.1029/2011JC007098.

    • Search Google Scholar
    • Export Citation
  • Dalrymple, R. A., J. H. MacMahan, A. Reniers, and V. Nelko, 2011: Rip currents. Annu. Rev. Fluid Mech., 43, 551581, doi:10.1146/annurev-fluid-122109-160733.

    • Search Google Scholar
    • Export Citation
  • Dayton, P. K., M. J. Tegner, P. B. Edwards, and K. L. Riser, 1999: Temporal and spatial scales of kelp demography: The role of oceanographic climate. Ecol. Monogr., 69, 219250, doi:10.1890/0012-9615(1999)069[0219:TASSOK]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deyle, E. R., and Coauthors, 2013: Predicting climate effects on Pacific sardine. Proc. Natl. Acad. Sci. USA, 110, 64306435, doi:10.1073/pnas.1215506110.

    • Search Google Scholar
    • Export Citation
  • Farahani, R. J., R. A. Dalrymple, A. Herault, and G. Bilotta, 2014: Three-dimensional SPH modeling of a bar/rip channel system. J. Waterw. Port Coastal Ocean Eng., 140, 8299, doi:10.1061/(ASCE)WW.1943-5460.0000214.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1997: The optimal stability ‘window’: A mechanism underlying decadal fluctuations in North Pacific salmon stocks. Fish. Oceanogr.,6, 109–117, doi:10.1046/j.1365-2419.1997.00033.x.

  • Haller, M. C., R. A. Dalrymple, and I. A. Svendesen, 2002: Experimental study of nearshore dynamics on a barred beach with rip channels. J. Geophys. Res., 107 (C6), doi:10.1029/2001JC000955.

    • Search Google Scholar
    • Export Citation
  • Hare, S. R., and N. J. Mantua, 2000: Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog. Oceanogr., 47, 103145, doi:10.1016/S0079-6611(00)00033-1.

    • Search Google Scholar
    • Export Citation
  • Hatch, M. B. A., 2012: The schlerochronology of Donax gouldii and Chione undatella: Environmental archives of the past and present Southern California Bight. Ph.D. dissertation, Scripps Institution of Oceanography, 128 pp.

  • Hatch, M. B. A., S. A. Schellenberg, and M. L. Carter, 2013: Ba/Ca variations in the modern intertidal bean clam Donax gouldii: An upwelling proxy? Palaeogeogr. Palaeoclimatol. Palaeoecol., 373, 98107, doi:10.1016/j.palaeo.2012.03.006.

    • Search Google Scholar
    • Export Citation
  • Hill, K. T., P. R. Crone, N. C. H. Lo, B. J. Macewicz, E. D. Dorval, J. D. McDaniel, and Y. Gu, 2011: Assessment of the Pacific sardine resource in 2011 for U.S. management in 2012. NOAA National Marine Fisheries Service, Southwest Fisheries Science Center Rep., 6 pp. [Available online at http://www.pcouncil.org/wp-content/uploads/F2b_ATT1_SARDINE_EXSUM_NOV2011BB.pdf.]

  • Hobday, A. J., and M. J. Tegner, 2002: The warm and the cold: Influence of temperature and fishing on local population dynamics of red abalone. CalCOFI Rep., 43, 7496. [Available online at www.calcofi.org/publications/calcofireports/v43/Vol_43_Hobday___Tegner.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hsieh, C. H., S. M. Glaser, A. J. Lucas, and G. Sugihara, 2005: Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature, 435, 336340, doi:10.1038/nature03553.

    • Search Google Scholar
    • Export Citation
  • Jacobson, L., and A. MacCall, 1995: Stock-recruitment models for Pacific sardine (Sardinops sagax). Can. J. Fish. Aquat. Sci., 52, 566577, doi:10.1139/f95-057.

    • Search Google Scholar
    • Export Citation
  • Jacobson, L., and S. McClatchie, 2013: Comment on temperature-dependent stock–recruit modeling for Pacific sardine (Sardinops sagax) in Jacobson and MacCall (1995), McClatchie et al. (2010), and Lindegren and Checkley (2013). Can. J. Fish. Aquat. Sci., 70, 15661569, doi:10.1139/cjfas-2013-0128.

    • Search Google Scholar
    • Export Citation
  • Jirka, G. H., K. D. Stolzenbach, and E. E. Adams, 1981: Buoyant surface jets. J. Hydraul. Div.,107, 1467–1487.

  • Kadir, T., L. Mazur, C. Milanes, and K. Randles, Eds., 2013: Indicators of climate change in California. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 228 pp. [Available online at www.oehha.ca.gov/multimedia/epic/pdf/ClimateChangeIndicatorsReport2013.pdf.]

  • Kim, H.-J., A. J. Miller, J. McGowan, and M. L. Carter, 2009: Coastal phytoplankton blooms in the Southern California Bight. Prog. Oceanogr., 82, 137147, doi:10.1016/j.pocean.2009.05.002.

    • Search Google Scholar
    • Export Citation
  • Lavaniegos, B. E., and M. D. Ohman, 2003: Long-term changes in pelagic tunicates of the California Current. Deep-Sea Res. II, 50, 24732498, doi:10.1016/S0967-0645(03)00132-2.

    • Search Google Scholar
    • Export Citation
  • Lindegren, M., and D. M. Checkley Jr., 2013: Temperature dependence of Pacific sardine (Sardinops sagax) recruitment in the California Current ecosystem revisited and revised. Can. J. Fish. Aquat. Sci., 70, 245252, doi:10.1139/cjfas-2012-0211.

    • Search Google Scholar
    • Export Citation
  • Lindegren, M., D. M. Checkley, T. Rouyer, A. D. MacCall, and N. C. Stenseth, 2013: Climate, fishing, and fluctuations of sardine and anchovy in the California Current. Proc. Natl. Acad. Sci. USA, 110, 13 67213 677, doi:10.1073/pnas.1305733110.

    • Search Google Scholar
    • Export Citation
  • Mackas, D. L., and G. Beaugrand, 2010: Comparisons of zooplankton time series. J. Mar. Syst., 79, 286304, doi:10.1016/j.jmarsys.2008.11.030.

    • Search Google Scholar
    • Export Citation
  • MacMahan, J. H., E. B. Thornton, and A. Reniers, 2006: Rip current review. Coastal Eng., 53, 191208, doi:10.1016/j.coastaleng.2005.10.009.

    • Search Google Scholar
    • Export Citation
  • Mantua, N., S. Hare, Y. Zhang, J. Wallace, and R. Francis, 1997: A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Amer. Meteor. Soc., 78, 10691079, doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McClatchie, S., R. Goericke, G. Auad, and K. Hill, 2010: Re-assessment of the stock–recruit and temperature–recruit relationships for Pacific sardine (Sardinops sagax). Can. J. Fish. Aquat. Sci.,67, 1782–1790, doi:10.1139/f10-101.

  • McGowan, J. A., D. R. Cayan, and L. M. Dorman, 1998: Climate-ocean variability and ecosystem response in the northeast Pacific. Science, 281, 210217, doi:10.1126/science.281.5374.210.

    • Search Google Scholar
    • Export Citation
  • Miller, E. F., and J. A. McGowan, 2013: Faunal shift in Southern California’s coastal fishes: A new assemblage and trophic structure takes hold. Estuarine Coastal Shelf Sci., 127, 2936, doi:10.1016/j.ecss.2013.04.014.

    • Search Google Scholar
    • Export Citation
  • Pacific Fishery Management Council, 2014: Decision summary document Pacific fishery management council meeting March 8-13, 2014. Pacific Fishery Management Council Rep., 6 pp. [Available online at www.pcouncil.org/wp-content/uploads/0314decisions.pdf.]

  • Parnell, P. E., E. F. Miller, C. E. Lennert-Cody, P. K. Dayton, M. L. Carter, and T. D. Stebbins, 2010: The response of giant kelp (Macrocystis pyrifera) in Southern California to low-frequency climate forcing. Limnol. Oceanogr., 55, 26862702.

    • Search Google Scholar
    • Export Citation
  • Ploberger, W., and W. Krämer, 1992: The CUSUM test with OLS residuals. Econometrica, 60, 271285, doi:10.2307/2951597.

  • Prytherch, J., J. T. Farrar, and R. A. Weller, 2013: Moored surface buoy observations of the diurnal warm layer. J. Geophys. Res. Oceans, 118, 45534569, doi:10.1002/jgrc.20360.

    • Search Google Scholar
    • Export Citation
  • Rebstock, G. A., 2002: Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California. Global Change Biol., 8, 7189, doi:10.1046/j.1365-2486.2002.00456.x.

    • Search Google Scholar
    • Export Citation
  • Rodionov, S. N., 2004: A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31, L09204, doi:10.1029/2004GL019448.

    • Search Google Scholar
    • Export Citation
  • Saeedi, M., A. A. Farahani, O. Abessi, and T. Bleninger, 2012: Laboratory studies defining flow regimes for negatively buoyant surface discharges into crossflow. Environ. Fluid Mech., 12, 439449, doi:10.1007/s10652-012-9245-4.

    • Search Google Scholar
    • Export Citation
  • Schwing, F. B., and R. Mendelssohn, 1997: Increased coastal upwelling in the California Current System. J. Geophys. Res., 102, 34213438, doi:10.1029/96JC03591.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., and J. G. Largier, 1995: Observations of nearshore circulation: Rip currents. J. Geophys. Res., 100, 10 96710 975, doi:10.1029/95JC00751.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Climate, 21, 22832296, doi:10.1175/2007JCLI2100.1.

    • Search Google Scholar
    • Export Citation
  • Stockdon, H. F., R. A. Holman, P. A. Howd, and A. H. Sallenger, 2006: Empirical parameterization of setup, swash, and runup. Coastal Eng., 53, 573588, doi:10.1016/j.coastaleng.2005.12.005.

    • Search Google Scholar
    • Export Citation
  • Sugihara, G., R. May, H. Ye, C. H. Hsieh, E. Deyle, M. Fogarty, and S. Munch, 2012: Detecting causality in complex ecosystems. Science, 338, 496500, doi:10.1126/science.1227079.

    • Search Google Scholar
    • Export Citation
  • Tegner, M. J., P. K. Dayton, P. B. Edwards, and K. L. Riser, 1996: Is there evidence for long-term climatic change in Southern California kelp forests? CalCOFI Rep., 37, 111126. [Available online at http://www.calcofi.org/publications/calcofireports/v37/Vol_37_Tegner_etal.pdf.]

    • Search Google Scholar
    • Export Citation
  • Twardowski, M., and Coauthors, 2012: The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations. J. Geophys. Res.,117, C00H17, doi:10.1029/2011JC007347.

  • Webster, P. J., C. A. Clayson, and J. A. Curry, 1996: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific. J. Climate, 9, 17121730, doi:10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7 7 7
PDF Downloads 9 9 9

Sea Surface Temperature Variability at the Scripps Institution of Oceanography Pier

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Restricted access

Abstract

Sea surface temperature (SST) has been measured from near the end of the Scripps Institution of Oceanography (SIO) pier daily since 1916. It is one of the world’s longest instrumental time series of SST. It is widely used in studies of climate and marine ecosystems and in fisheries management. The authors hypothesized that a discontinuity exists in 1988, when the old pier was replaced with the present pier. A regression of annual-mean SST at SIO (SSTSIO) on the Pacific decadal oscillation index for 1916–87 was used to predict annual-mean SST (SSTSIO, PDO) for 1916–present. The residual (ResSSTSIO = SSTSIO − SSTSIO,PDO) time series shows a positive discontinuity in 1988, when the present SIO pier was first used to measure SSTSIO. No discontinuity in 1988 was observed for ResSST at 12 other shore stations or in nearby waters. Use of the first principal component of other shore station time series of annual-mean SST as the predictor yields similar results. SSTSIO measured over 3 days shows a diel cycle and short-term variability consistent with rip current transport of warm surf-zone water to the end of the SIO pier. This study hypothesizes that rip current transport increased with the change from the old to the present pier and contributed to the observed discontinuity in SIO pier SST. The authors estimate an artifact of about +0.45°C due to both rapid (1988 pier change) and gradual processes. Adjusting the SIO pier SST time series for this artifact reduces the long-term trend from +1.1° to +0.6°C century−1, consistent with the global rate of change of SST over the past century.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-13-0237.s1.

Current affiliation: Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark.

Corresponding author address: David M. Checkley, Jr., Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0218. E-mail: dcheckley@ucsd.edu

Abstract

Sea surface temperature (SST) has been measured from near the end of the Scripps Institution of Oceanography (SIO) pier daily since 1916. It is one of the world’s longest instrumental time series of SST. It is widely used in studies of climate and marine ecosystems and in fisheries management. The authors hypothesized that a discontinuity exists in 1988, when the old pier was replaced with the present pier. A regression of annual-mean SST at SIO (SSTSIO) on the Pacific decadal oscillation index for 1916–87 was used to predict annual-mean SST (SSTSIO, PDO) for 1916–present. The residual (ResSSTSIO = SSTSIO − SSTSIO,PDO) time series shows a positive discontinuity in 1988, when the present SIO pier was first used to measure SSTSIO. No discontinuity in 1988 was observed for ResSST at 12 other shore stations or in nearby waters. Use of the first principal component of other shore station time series of annual-mean SST as the predictor yields similar results. SSTSIO measured over 3 days shows a diel cycle and short-term variability consistent with rip current transport of warm surf-zone water to the end of the SIO pier. This study hypothesizes that rip current transport increased with the change from the old to the present pier and contributed to the observed discontinuity in SIO pier SST. The authors estimate an artifact of about +0.45°C due to both rapid (1988 pier change) and gradual processes. Adjusting the SIO pier SST time series for this artifact reduces the long-term trend from +1.1° to +0.6°C century−1, consistent with the global rate of change of SST over the past century.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JPO-D-13-0237.s1.

Current affiliation: Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark.

Corresponding author address: David M. Checkley, Jr., Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0218. E-mail: dcheckley@ucsd.edu

Supplementary Materials

    • Supplemental Materials (DOCX 1.02 MB)
Save