• Andreas, E. L, 1989: Thermal and size evolution of sea spray droplets. CRREL Rep. 89-11, 47 pp.

  • Andreas, E. L, 1990: Time constants for the evolution of sea spray droplets. Tellus, 42B, 481497, doi:10.1034/j.1600-0889.1990.t01-3-00007.x.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, doi:10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

  • Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445, doi:10.1175/2011JAS3714.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, J. B. Edson, E. C. Monahan, M. P. Rouault, and S. D. Smith, 1995: The spray contribution to net evaporation from the sea: A review of recent progress. Bound.-Layer Meteor., 72, 352, doi:10.1007/BF00712389.

    • Search Google Scholar
    • Export Citation
  • Brocchini, M., and D. H. Peregrine, 2001: The dynamics of strong turbulence at free surfaces. Part 1. Description. J. Fluid Mech., 449, 225254, doi:10.1017/S0022112001006012.

    • Search Google Scholar
    • Export Citation
  • Clift, R., and W. H. Gauvin, 1970: The motion of particles in turbulent gas streams. Proc. Chemeca, 70, 1428.

  • Couzinet, A., 2008: Approche pdf jointe fluide-particule pour la modélisation des écoulements turbulents diphasiques anisothermes. Ph.D. dissertation, L’Institut National Polytechnique de Toulouse, 185 pp.

  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, doi:10.1029/95JC03796.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115, doi:10.1175/JAS3889.1.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. W. Fairall, 1994: Spray droplet modeling. 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J. Geophys. Res., 99, 25 29525 311, doi:10.1029/94JC01883.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., S. Anquetin, P. G. Mestayer, and J. F. Sini, 1996: Spray droplet modeling: 2. An interactive Eulerian-Lagrangian model of evaporating spray droplets. J. Geophys. Res., 101, 12791293, doi:10.1029/95JC03280.

    • Search Google Scholar
    • Export Citation
  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res., 102, 15 78115 796, doi:10.1029/97JC00467.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, G. A. Wick, J. B. Edson, and G. S. Young, 1996a: Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., A. A. Grachev, A. J. Bedard, and R. T. Nishiyama, 1996b: Wind, wave, stress, and surface roughness relationships from turbulence measurements made on R/P flip in the scope experiment. NOAA Tech. Memo. ERL ETL-268, 37 pp.

  • Fairall, C. W., A. B. White, J. B. Edson, and J. E. Hare, 1997: Integrated shipboard measurements of the marine boundary layer. J. Atmos. Oceanic Technol., 14, 338359, doi:10.1175/1520-0426(1997)014<0338:ISMOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Innocentini, V., and I. A. Gonçalves, 2010: The impact of spume droplets and wave stress parameterizations on simulated near-surface maritime wind and temperature. J. Phys. Oceanogr., 40, 13731389, doi:10.1175/2010JPO4349.1.

    • Search Google Scholar
    • Export Citation
  • Kawai, S., 1982: Structure of air flow separation over wind wave crests. Bound.-Layer Meteor., 23, 503521, doi:10.1007/BF00116275.

  • Kawamura, H., and Y. Toba, 1988: Ordered motion in the turbulent boundary layer over wind waves. J. Fluid Mech., 197, 105138, doi:10.1017/S0022112088003192.

    • Search Google Scholar
    • Export Citation
  • Lewis, E. R., and S. E. Schwartz, 2004: Sea Salt Aerosol Production: Mechanisms, Methods, Measurements, and Models. Geophys. Monogr., Vol. 152, Amer. Geophys. Union, 413 pp., doi:10.1029/GM152.

  • Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of air-sea exchanges of heat and water-vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mastenbroek, C., V. K. Makin, M. H. Garat, and J. P. Giovanangeli, 1996: Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech., 318, 273302, doi:10.1017/S0022112096007124.

    • Search Google Scholar
    • Export Citation
  • Maxey, M. R., and J. J. Riley, 1983: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids, 26, 883889, doi:10.1063/1.864230.

    • Search Google Scholar
    • Export Citation
  • Meirink, J., 2002: The role of wind-waves and sea spray on air-sea interaction. Ph.D. dissertation, Technische Universiteit Delft, 161 pp.

  • Moissette, S., B. Oesterlé, and P. Boulet, 2001: Temperature fluctuations of discrete particles in a homogenous turbulent flow: A Lagrangian model. Int. J. Heat Fluid Flow, 22, 220226, doi:10.1016/S0142-727X(01)00083-2.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009a: A Lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Bound.-Layer Meteor., 130, 229247, doi:10.1007/s10546-008-9340-8.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009b: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134, doi:10.1007/s10546-008-9334-6.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009c: A sea state–dependent spume generation function. J. Phys. Oceanogr., 39, 23632372, doi:10.1175/2009JPO4113.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2010a: Bulk formulation of the heat and water vapor fluxes at the air–sea interface, including nonmolecular contributions. J. Atmos. Sci., 67, 234247, doi:10.1175/2009JAS3061.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2010b: A Lagrangian stochastic model for sea-spray evaporation in the atmospheric marine boundary layer. Bound.-Layer Meteor., 137, 135152, doi:10.1007/s10546-010-9520-1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014: Impact of sea spray on air–sea fluxes. Part II: Feedback effects. J. Phys. Oceanogr., in press.

  • Nalpanis, P., J. C. R. Hunt, and C. F. Barret, 1993: Saltating particles over flat beds. J. Fluid Mech., 251, 661685, doi:10.1017/S0022112093003568.

    • Search Google Scholar
    • Export Citation
  • Pattison, M. J., and S. E. Belcher, 1999: Production rates of sea-spray droplets. J. Geophys. Res., 104, 18 39718 407, doi:10.1029/1999JC900090.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Riedel, 714 pp.

  • Reul, N., H. Branger, and J.-P. Giovanangeli, 2008: Air flow structure over short-gravity breaking water waves. Bound.-Layer Meteor., 126, 477505, doi:10.1007/s10546-007-9240-3.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., M. Pinsky, and A. Khain, 2011: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci., 68, 23662384, doi:10.1175/2011JAS3652.1.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., J. A. Zhang, M. Pinsky, and A. Khain, 2012: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II: The role of sea spray. J. Atmos. Sci., 69, 35013514, doi:10.1175/JAS-D-11-0281.1.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., J. C. McWilliams, and C. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785, doi:10.1017/S0022112099006965.

    • Search Google Scholar
    • Export Citation
  • Thomson, D. J., 1987: Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech., 180, 529556, doi:10.1017/S0022112087001940.

    • Search Google Scholar
    • Export Citation
  • Van Driest, E. R., 1956: On turbulent flow near a wall. J. Aeronaut. Sci., 23, 10071011, doi:10.2514/8.3713.

  • Van Eijk, A. M. J., B. S. Tranchant, and P. G. Mestayer, 2001: Seacluse: Numerical simulation of evaporating sea spray droplets. J. Geophys. Res., 106, 25732588, doi:10.1029/2000JC000377.

    • Search Google Scholar
    • Export Citation
  • Veron, F., G. Saxena, and S. K. Misra, 2007: Measurements of the viscous tangential stress in the airflow above wind waves. Geophys. Res. Lett., 34, L19603, doi:10.1029/2007GL031242.

    • Search Google Scholar
    • Export Citation
  • Veron, F., C. Hopkins, E. Harrison, and J. Mueller, 2012: Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett.,39, L16602, doi:10.1029/2012GL052603.

  • Wilson, J. D., and B. L. Sawford, 1996: Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Bound.-Layer Meteor., 78, 191210, doi:10.1007/BF00122492.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 9 9 7
PDF Downloads 6 6 6

Impact of Sea Spray on Air–Sea Fluxes. Part I: Results from Stochastic Simulations of Sea Spray Drops over the Ocean

View More View Less
  • 1 School of Marine Science and Policy, University of Delaware, Newark, Delaware
Restricted access

Abstract

The contributions of sea spray drops to the total air–sea exchanges of momentum, heat, and mass remain an open question. A number of factors obscure any simple quantification of their contribution; the per drop contribution to the fluxes is a particularly important factor that cannot be calculated easily, as are the number of drops formed. To estimate the per droplet fluxes, the authors first calculate the low order statistics from a large number of drop trajectories, which are simulated with a recently developed Lagrangian stochastic model adapted for the heavy drop transport and evaporation within the marine boundary layer. This paper describes the results from simulations of sea spray drops over the ocean, and as one of two parts, summarizes new estimations for the spray-mediated fluxes on a per drop basis. The results suggest that common simplifications in previous sea spray models, such as the residence time in the marine boundary layer, may not be appropriate.

Corresponding author address: Fabrice Veron, University of Delaware, 112C Robinson Hall, Newark, DE 19716. E-mail: fveron@udel.edu

Abstract

The contributions of sea spray drops to the total air–sea exchanges of momentum, heat, and mass remain an open question. A number of factors obscure any simple quantification of their contribution; the per drop contribution to the fluxes is a particularly important factor that cannot be calculated easily, as are the number of drops formed. To estimate the per droplet fluxes, the authors first calculate the low order statistics from a large number of drop trajectories, which are simulated with a recently developed Lagrangian stochastic model adapted for the heavy drop transport and evaporation within the marine boundary layer. This paper describes the results from simulations of sea spray drops over the ocean, and as one of two parts, summarizes new estimations for the spray-mediated fluxes on a per drop basis. The results suggest that common simplifications in previous sea spray models, such as the residence time in the marine boundary layer, may not be appropriate.

Corresponding author address: Fabrice Veron, University of Delaware, 112C Robinson Hall, Newark, DE 19716. E-mail: fveron@udel.edu
Save