• Andreas, E. L, 1989: Thermal and size evolution of sea spray droplets. U. S. Army Corp of Engineers Cold Regions Research and Engineering Laboratory CRELL Rep. 89-11, 47 pp.

  • Andreas, E. L, 1990: Time constants for the evolution of sea spray droplets. Tellus,42B, 481–497, doi:10.1034/j.1600-0889.1990.t01-3-00007.x.

  • Andreas, E. L, 1992: Sea spray and the turbulent air-sea heat fluxes. J. Geophys. Res., 97, 11 42911 441, doi:10.1029/92JC00876.

  • Andreas, E. L, 2002: A review of the sea spray generation function for the open ocean. Atmosphere-Ocean Interactions, W. A. Perrie, Ed., Advances in Fluid Mechanics, Vol. 1, WIT Press, 1–46.

  • Andreas, E. L, 2004: Spray stress revisited. J. Phys. Oceanogr., 34, 14291440, doi:10.1175/1520-0485(2004)034<1429:SSR>2.0.CO;2.

  • Andreas, E. L, 2011: Fallacies of the enthalpy transfer coefficient over the ocean in high winds. J. Atmos. Sci., 68, 14351445, doi:10.1175/2011JAS3714.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, and J. DeCosmo, 1999: Sea spray production and influence on air-sea heat and moisture fluxes over the open ocean. Air-Sea Exchange: Physics, Chemistry and Dynamics, G. L. Geernaert, Ed., Kluwer, 327–362, doi:10.1007/978-94-015-9291-8_13.

  • Andreas, E. L, and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751, doi:10.1175/1520-0469(2001)058<3741:EOSSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, P. O. G. Persson, and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596, doi:10.1175/2007JPO3813.1.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., C. W. Fairall, S. A. Michelson, and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, doi:10.1175/MWR-D-11-00007.1.

    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., A. J. Chorin, and V. M. Prostokishin, 2005: A note concerning the Lighthill “sandwhich model” of tropical cyclones. Proc. Natl. Acad. Sci. USA, 102, 11 14811 150, doi:10.1073/pnas.0505209102.

    • Search Google Scholar
    • Export Citation
  • Beard, K. V., and H. R. Pruppacher, 1971: A wind tunnel investigation of rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci.,28, 1455–1464, doi:10.1175/1520-0469(1971)028<1455:AWTIOT>2.0.CO;2.

  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341, doi:10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., J. W. Bao, C. W. Fairall, and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361–381, doi:10.1007/s10546-011-9617-1.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air–sea transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. C., and A. H. Woodcock, 1957: Bubble formation and modification in the sea and its meteorological significance. Tellus,9, 145–158, doi:10.1111/j.2153-3490.1957.tb01867.x.

  • Bryan, G. H., and R. Rotunno, 2009a: Evaluation of an analytical model for the maximum intensity of tropical cyclones. J. Atmos. Sci., 66, 30423060, doi:10.1175/2009JAS3038.1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and R. Rotunno, 2009b: The maximum intensity of tropical cyclones in axisymmetric numerical model simulations. Mon. Wea. Rev., 137, 17701789, doi:10.1175/2008MWR2709.1.

    • Search Google Scholar
    • Export Citation
  • Businger, J. A., J. C. Wyngaard, Y. Izumi, and E. F. Bradley, 1971: Flux-profile relationships in atmospheric surface layer. J. Atmos. Sci., 28, 181189, doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bye, J. A. T., and A. D. Jenkins, 2006: Drag coefficient reduction at very high wind speeds. J. Geophys. Res., 111, C03024, doi:10.1029/2005JC003114.

    • Search Google Scholar
    • Export Citation
  • Clift, R., and W. H. Gauvin, 1970: The motion of particles in turbulent gas streams. Proc. Chemeca ’70, Vol. 1, 14–28.

  • Clift, R., J. R. Grace, and M. E. Weber, 1978: Bubbles, Drops, and Particles. Academic Press, 380 pp.

  • DeCosmo, J., K. B. Katsaros, S. D. Smith, R. J. Anderson, W. A. Oost, K. Bumke, and H. Chadwick, 1996: Air-sea exchange of water vapor and sensible heat: The Humidity Exchange over the Sea (HEXOS) results. J. Geophys. Res., 101, 12 00112 016, doi:10.1029/95JC03796.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Drennan, W. M., J. A. Zhang, J. R. French, C. McCormick, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part II: Latent heat flux. J. Atmos. Sci., 64, 11031115, doi:10.1175/JAS3889.1.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and C. Fairall, 1998: Similarity relationships in the marine surface layer. J. Atmos. Sci., 55, 23112328, doi:10.1175/1520-0469(1998)055<2311:SRITMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., S. Anquetin, P. G. Mestayer, and J. F. Sini, 1996: Spray droplet modeling: 2. An interactive Eulerian-Lagrangian model of evaporating spray droplets. J. Geophys. Res., 101, 12791293, doi:10.1029/95JC03280.

    • Search Google Scholar
    • Export Citation
  • Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, 1997: A unified directional spectrum for long and short wind-driven waves. J. Geophys. Res.,102, 15 781–15 796, doi:10.1029/97JC00467.

  • Emanuel, K. A., 1986: An air–sea theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. D. Kepert, and G. J. Holland, 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101, 37473764, doi:10.1029/95JC03205.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591, doi:10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fitzgerald, J. W., 1975: Approximation formulas for the equilibrium size of an aerosol particle as a function of its dry size and composition and the ambient relative humidity. J. Appl. Meteor., 14, 10441049, doi:10.1175/1520-0450(1975)014<1044:AFFTES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • French, J. R., W. M. Drennan, J. A. Zhang, and P. G. Black, 2007: Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. J. Atmos. Sci., 64, 10891102, doi:10.1175/JAS3887.1.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, doi:10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495515, doi:10.1023/A:1002452529672.

    • Search Google Scholar
    • Export Citation
  • Haus, B. K., D. Jeong, M. A. Donelan, J. A. Zhang, and I. Savelyev, 2010: Relative rates of sea-air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, doi:10.1029/2009GL042206.

    • Search Google Scholar
    • Export Citation
  • Hinze, J. O., 1955: Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J., 1, 289295, doi:10.1002/aic.690010303.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

    • Search Google Scholar
    • Export Citation
  • Innocentini, V., and I. A. Gonalves, 2010: The impact of spume droplets and wave stress parameterizations on simulated near-surface maritime wind and temperature. J. Phys. Oceanogr., 40, 13731389, doi:10.1175/2010JPO4349.1.

    • Search Google Scholar
    • Export Citation
  • Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315, 17071709, doi:10.1126/science.1136466.

    • Search Google Scholar
    • Export Citation
  • Jeong, D., 2008: Laboratory measurements of the moist enthalpy transfer coefficient. M.S. thesis, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 63 pp.

  • Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Bound.-Layer Meteor., 9, 91112, doi:10.1007/BF00232256.

  • Kudryavtsev, V. N., 2006: On effect of sea drops on atmospheric boundary layer. J. Geophys. Res., 111, C07020, doi:10.1029/2005JC002970.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2007: Aerodynamic roughness of the sea surface at high winds. Bound.-Layer Meteor., 125, 289303, doi:10.1007/s10546-007-9184-7.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., and V. K. Makin, 2011: Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteor., 140, 383–410, doi:10.1007/s10546-011-9624-2.

    • Search Google Scholar
    • Export Citation
  • Lighthill, J., 1999: Ocean spray and the thermodynamics of tropical cyclones. J. Eng. Math., 35, 1142, doi:10.1023/A:1004383430896.

  • Lumley, J. L., and H. A. Panofsky, 1964: The Structure of Atmospheric Turbulence. J. Wiley and Sons, 229 pp.

  • Makin, V. K., and V. N. Kudryavtsev, 1999: Coupled sea surface-atmosphere model: 1. Wind over waves coupling. J. Geophys. Res., 104, 76137624, doi:10.1029/1999JC900006.

    • Search Google Scholar
    • Export Citation
  • Meirink, J., 2002: The role of wind-waves and sea spray on air-sea interaction. Ph.D. dissertation, Technische Universiteit Delft, 161 pp.

  • Mestayer, P. G., and Coauthors, 1990: CLUSE simulations of the vapor flux modification by droplet evaporation. Modelling the fate and influence of marine spray, Marine Sciences Institute, University of Connecticut, Whitecap Rep. 7, 100–105.

  • Monahan, E. C., and I. O’Muircheartaigh, 1980: Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J. Phys. Oceanogr., 10, 20942099, doi:10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Geofiz. Inst. Akad. Nauk SSSR, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009a: A Lagrangian stochastic model for heavy particle dispersion in the atmospheric marine boundary layer. Bound.-Layer Meteor., 130, 229247, doi:10.1007/s10546-008-9340-8.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009b: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134, doi:10.1007/s10546-008-9334-6.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2009c: A sea state–dependent spume generation function. J. Phys. Oceanogr., 39, 23632372, doi:10.1175/2009JPO4113.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2010a: A Lagrangian stochastic model for sea-spray evaporation in the atmospheric marine boundary layer. Bound.-Layer Meteor., 137, 135152, doi:10.1007/s10546-010-9520-1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2010b: Bulk formulation of the heat and water vapor fluxes at the air–sea interface, including nonmolecular contributions. J. Atmos. Sci., 67, 234247, doi:10.1175/2009JAS3061.1.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., and F. Veron, 2014: Impact of sea spray on air–sea fluxes. Part I: Results from stochastic simulations of sea spray drops over the ocean. J. Phys. Oceanogr., 44, 28172834, doi:10.1175/JPO-D-13-0245.1.

  • Obukhov, A. M., 1946: Turbulence in an atmosphere with non-uniform temperature. Tr. Inst. Teor. Geofiz. Nauk SSSR, 1, 95115.

  • Petersen, G. N., and I. A. Renfrew, 2009: Aircraft-based observations of air–sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Quart. J. Roy. Meteor. Soc., 135, 20302045, doi:10.1002/qj.355.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1978: Microphysics of Clouds and Precipitation. D. Riedel, 714 pp.

  • Raudviki, A. J., 1976: Loose Boundary Hydraulics. Pergamon Press, 397 pp.

  • Richter, D. H., and P. P. Sullivan, 2013: Sea surface drag and the role of spray. Geophys. Res. Lett., 40, 656660, doi:10.1002/grl.50163.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., J. A. Zhang, M. Pinsky, and A. Khain, 2012: Microphysical structure of the marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part II: The role of sea spray. J. Atmos. Sci., 69, 35013514, doi:10.1175/JAS-D-11-0281.1.

    • Search Google Scholar
    • Export Citation
  • Van Eijk, A. M. J., B. S. Tranchant, and P. G. Mestayer, 2001: SeaCluse: Numerical simulation of evaporating sea spray droplets. J. Geophys. Res., 106, 25732588, doi:10.1029/2000JC000377.

    • Search Google Scholar
    • Export Citation
  • Veron, F., C. Hopkins, E. Harrison, and J. Mueller, 2012: Sea spray spume droplet production in high wind speeds. Geophys. Res. Lett.,39, L16602, doi:10.1029/2012GL052603.

  • Wyngaard, J. C., 1973: On surface layer turbulence. Workshop on Micrometeorology, D. A. Haugen, Ed., Amer. Meteor. Soc., 101149.

  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 110 0
PDF Downloads 126 92 0

Impact of Sea Spray on Air–Sea Fluxes. Part II: Feedback Effects

View More View Less
  • 1 School of Marine Science and Policy, University of Delaware, Newark, Delaware
Restricted access

Abstract

This paper presents estimations for the transfer of momentum, heat, and water mass between the air and the sea. The results from Lagrangian stochastic simulations of sea spray drops (see Part I), along with two sea spray generation functions, are used to calculate the spray-mediated flux components of the air–sea fluxes. When the spray-mediated fluxes constitute a significant fraction of the total fluxes under certain conditions, their feedback effect on the atmosphere cannot be neglected. The authors derive a simplified feedback model to investigate such cases, finding that the spray-mediated fluxes may be especially sensitive to the size distribution of the drops. The total effective air–sea fluxes lead to drag and enthalpy coefficients that increase modestly with wind speed. The rate of increase for the drag coefficient is greatest at moderate wind speeds, while the rate of increase for the enthalpy coefficient is greatest at higher wind speeds where the spray is ubiquitous.

Corresponding author address: Fabrice Veron, University of Delaware, 112C Robinson Hall, Newark, DE 19716. E-mail: fveron@udel.edu

Abstract

This paper presents estimations for the transfer of momentum, heat, and water mass between the air and the sea. The results from Lagrangian stochastic simulations of sea spray drops (see Part I), along with two sea spray generation functions, are used to calculate the spray-mediated flux components of the air–sea fluxes. When the spray-mediated fluxes constitute a significant fraction of the total fluxes under certain conditions, their feedback effect on the atmosphere cannot be neglected. The authors derive a simplified feedback model to investigate such cases, finding that the spray-mediated fluxes may be especially sensitive to the size distribution of the drops. The total effective air–sea fluxes lead to drag and enthalpy coefficients that increase modestly with wind speed. The rate of increase for the drag coefficient is greatest at moderate wind speeds, while the rate of increase for the enthalpy coefficient is greatest at higher wind speeds where the spray is ubiquitous.

Corresponding author address: Fabrice Veron, University of Delaware, 112C Robinson Hall, Newark, DE 19716. E-mail: fveron@udel.edu
Save