• Avicola, G., and P. Huq, 2002: Scaling analysis for the interaction between a buoyant coastal current and the continental shelf: Experiments and observations. J. Phys. Oceanogr., 32, 32333248, doi:10.1175/1520-0485(2002)032<3233:SAFTIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Avicola, G., and P. Huq, 2003a: The characteristics of the recirculating bulge region in coastal buoyant outflows. J. Mar. Res., 61, 435463, doi:10.1357/002224003322384889.

    • Search Google Scholar
    • Export Citation
  • Avicola, G., and P. Huq, 2003b: The role of outflow geometry in the formation of the recirculating bulge region in coastal buoyant outflows. J. Mar. Res., 61, 411434, doi:10.1357/002224003322384870.

    • Search Google Scholar
    • Export Citation
  • Battisti, D. S., and A. J. Clarke, 1982: A simple method for estimating barotropic tidal currents on continental margins with specific application to the M2 tide off the Atlantic and Pacific coasts of the United States. J. Phys. Oceanogr., 12, 816, doi:10.1175/1520-0485(1982)012<0008:ASMFEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beardsley, R. C., R. Limeburner, H. Yu, and G. A. Cannon, 1985: Discharge of the Changjiang into the East China Sea. Cont. Shelf Res., 4, 5776, doi:10.1016/0278-4343(85)90022-6.

    • Search Google Scholar
    • Export Citation
  • Chant, R. J., 2012: Interactions between estuaries and coasts: River plumes—Their formation, transport, and dispersal. Water and Fine-Sediment Circulation, R. J. Uncles and S. G. Monismith, Eds., Vol. 2, Treatise on Estuarine and Coastal Sciences, Academic Press, 213–236.

  • Chant, R. J., S. M. Glenn, E. Hunter, J. Kohut, R. F. Chen, R. W. Houghton, J. Bosch, and O. Schofield, 2008: Bulge formation of a buoyant river outflow. J. Geophys. Res., 113, C01017, doi:10.1029/2007JC004100.

    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., 1988: Wind-driven motion of estuarine plumes. J. Phys. Oceanogr., 18, 11441166, doi:10.1175/1520-0485(1988)018<1144:WDMOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., and W. C. Boicourt, 1986: Onset of estuarine plumes. J. Phys. Oceanogr., 16, 21372149, doi:10.1175/1520-0485(1986)016<2137:OOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., D. G. MacDonald, and R. D. Hetland, 2009: Lateral spreading of a near-field river plume: Observations and numerical simulations. J. Geophys. Res., 114, C07013, doi:10.1029/2008JC004893.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2001: Response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 106, 10671084, doi:10.1029/2000JC900134.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2002: The alongshore transport of freshwater in a surface-trapped river plume. J. Phys. Oceanogr., 32, 957972, doi:10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., W. R. Geyer, and R. P. Signell, 1997: The wind-forced response of a buoyant coastal current: Observations of the western Gulf of Maine plume. J. Mar. Syst., 12, 6981, doi:10.1016/S0924-7963(96)00089-9.

    • Search Google Scholar
    • Export Citation
  • Garcia Berdeal, I., B. M. Hickey, and M. Kawase, 2002: Influence of wind stress and ambient flow on a high discharge river plume. J. Geophys. Res., 107, 3130, doi:10.1029/2001JC000932.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1999: Penetration of buoyant coastal discharge onto the continental shelf: A numerical model experiment. J. Phys. Oceanogr., 29, 18921909, doi:10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 2001: The impact of model configuration in studies of buoyant coastal discharge. J. Mar. Res., 59, 193225, doi:10.1357/002224001762882637.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D. B., H. G. Arango, K. Hedstrom, A. Beckmann, and P. Malanotte-Rizzoli, 2000: Model evaluation experiments in the North Atlantic basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, doi:10.1016/S0377-0265(00)00049-X.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., and D. G. MacDonald, 2008: Spreading in the near-field Merrimack River plume. Ocean Modell., 21, 1221, doi:10.1016/j.ocemod.2007.11.001.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., and Coauthors, 2010: River influences on shelf ecosystems: Introduction and synthesis. J. Geophys. Res., 115, C00B17, doi:10.1029/2009JC005452.

    • Search Google Scholar
    • Export Citation
  • Horner-Devine, A. R., 2009: The bulge circulation in the Columbia River plume. Cont. Shelf Res., 29, 234251, doi:10.1016/j.csr.2007.12.012.

    • Search Google Scholar
    • Export Citation
  • Horner-Devine, A. R., D. A. Fong, S. G. Monismith, and T. Maxworthy, 2006: Laboratory experiments simulating a coastal river inflow. J. Fluid Mech., 555, 203232, doi:10.1017/S0022112006008937.

    • Search Google Scholar
    • Export Citation
  • Horner-Devine, A. R., D. A. Fong, and S. G. Monismith, 2008: Evidence for the inherent unsteadiness of a river plume: Satellite observations of the Niagara River discharge. Limnol. Oceanogr., 53, 27312737, doi:10.4319/lo.2008.53.6.2731.

    • Search Google Scholar
    • Export Citation
  • Isobe, A., 2005: Ballooning of river-plume bulge and its stabilization by tidal currents. J. Phys. Oceanogr., 35, 23372351, doi:10.1175/JPO2837.1.

    • Search Google Scholar
    • Export Citation
  • Jay, D. A., E. D. Zaron, and J. Pan, 2010: Initial expansion of the Columbia River tidal plume: Theory and remote sensing observations. J. Geophys. Res., 115, C00B15, doi:10.1029/2008JC004996.

    • Search Google Scholar
    • Export Citation
  • Jones, W. P., and B. E. Launder, 1972: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 15, 301314, doi:10.1016/0017-9310(72)90076-2.

    • Search Google Scholar
    • Export Citation
  • Kantha, L. H., and C. A. Clayson, 1994: An improved mixed layer model for geophysical applications. J. Geophys. Res., 99, 25 23525 266, doi:10.1029/94JC02257.

    • Search Google Scholar
    • Export Citation
  • Kourafalou, V. H., L.-Y. Oey, J. D. Wang, and T. N. Lee, 1996: The fate of river discharge on the continental shelf: 1. Modeling the river plume and the inner shelf coastal current. J. Geophys. Res., 101, 34153434, doi:10.1029/95JC03024.

    • Search Google Scholar
    • Export Citation
  • Larsen, L. H., G. A. Cannon, and B. H. Choi, 1985: East China Sea tidal currents. Cont. Shelf Res., 4, 77103, doi:10.1016/0278-4343(85)90023-8.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2004: The response of buoyant coastal plumes to upwelling-favorable winds. J. Phys. Oceanogr., 34, 24582469, doi:10.1175/JPO2647.1.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and K. R. Helfrich, 2002: Buoyant gravity currents along a sloping bottom in a rotating fluid. J. Fluid Mech., 464, 251278, doi:10.1017/S0022112002008868.

    • Search Google Scholar
    • Export Citation
  • Li, M., and Z. Rong, 2012: Effects of tides on freshwater and volume transports in the Changjiang River plume. J. Geophys. Res., 117, C06027, doi:10.1029/2011JC007716.

    • Search Google Scholar
    • Export Citation
  • MacDonald, D. G., and W. R. Geyer, 2004: Turbulent energy production and entrainment at a highly stratified estuarine front. J. Geophys. Res., 109, C05004, doi:10.1029/2003JC002094.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., B. M. Hickey, and P. MacCready, 2008: Observational estimates of entrainment and vertical salt flux in the interior of a spreading river plume. J. Geophys. Res., 113, C08027, doi:10.1029/2007JC004361.

    • Search Google Scholar
    • Export Citation
  • McCabe, R. M., P. MacCready, and B. M. Hickey, 2009: Ebb-tide dynamics and spreading of a large river plume. J. Phys. Oceanogr., 39, 28392856, doi:10.1175/2009JPO4061.1.

    • Search Google Scholar
    • Export Citation
  • Munchow, A. K., and R. W. Garvine, 1993: Dynamical properties of a buoyancy-driven coastal current. J. Geophys. Res., 98, 20 06320 077, doi:10.1029/93JC02112.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., and J. N. Moum, 2005: River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature, 437, 400–403, doi:10.1038/nature03936.

    • Search Google Scholar
    • Export Citation
  • Rennie, S., J. L. Largier, and S. J. Lentz, 1999: Observations of low-salinity coastal current pulses downstream of Chesapeake Bay. J. Geophys. Res., 104, 18 22718 240, doi:10.1029/1999JC900153.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 2005: The Region Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. H., W. G. Bos, F. Shirmer, A. J. Souza, T. P. Rippeth, S. E. Jones, and D. Hydes, 1993: Periodic stratification in the Rhine ROFI in the North Sea. Oceanol. Acta, 16, 2332.

    • Search Google Scholar
    • Export Citation
  • Tilburg, C. E., R. W. Houghton, and R. W. Garvine, 2007: Mixing of a dye tracer in the Delaware plume: Comparison of observations and simulations. J. Geophys. Res., 112, C12004, doi:10.1029/2006JC003928.

    • Search Google Scholar
    • Export Citation
  • Whitehead, J. A., 1985: The deflection of a baroclinic jet by a wall in a rotating fluid. J. Fluid Mech., 157, 7993, doi:10.1017/S0022112085002312.

    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and R. W. Garvine, 2006: Simulating the Delaware Bay buoyant outflow: Comparison with observations. J. Phys. Oceanogr., 36, 321, doi:10.1175/JPO2805.1.

    • Search Google Scholar
    • Export Citation
  • Wu, H., B. Deng, R. Yuan, J. Hu, J. Gu, F. Shen, J. Zhu, and J. Zhang, 2013: Detiding measurement on transport of the Changjiang-derived buoyant coastal current. J. Phys. Oceanogr., 43, 23882399, doi:10.1175/JPO-D-12-0158.1.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., and D. C. Chapman, 1997: A simple theory for the fate of buoyant coastal discharge. J. Phys. Oceanogr., 27, 13861401, doi:10.1175/1520-0485(1997)027<1386:ASTFTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3 3 3
PDF Downloads 3 3 3

Enhancement of Alongshore Freshwater Transport in Surface-Advected River Plumes by Tides

View More View Less
  • 1 Institute of Oceanography, National Taiwan University, Taipei, Taiwan
Restricted access

Abstract

A recent numerical study by Isobe showed that imposing alongshore tidal forcing on buoyant coastal discharge enhances the net freshwater transport in the coastal currents. The mechanisms for this transport enhancement are studied using a three-dimensional, primitive equation ocean model [Regional Ocean Modeling System (ROMS)]. Lagrangian drifters are used to trace the freshwater transport paths. It is found that the river plume bulge circulation largely follows the rigid-body motion (i.e., constant vorticity). The buoyant fluid near the bulge’s outer edge is thinner and faster, behaving as a baroclinic jet. The bulge currents then split after impinging on the coast. The outer fluid feeds the downshelf-flowing coastal currents, while the inner fluid recirculates to form the bulge. The coastal current transport estimated from the present and prior studies corresponds well to a baroclinic jet theory, with the incident angle of bulge currents at the coast being a key parameter. Without tides, the bulge is approximately circular. The incident angle measured with respect to the cross-shore axis is small. With tides, the convergence of tidal momentum fluxes near the upshelf plume front leads to a positive pressure anomaly, which acts to compress the bulge shoreward. As a result, the incident angle increases, which in turn enhances the downshelf momentum input, thus increasing the freshwater transport in the coastal currents. Finally, the parameter space for coastal current transport in the presence of tidal forcing is explored with a conceptual model. A few observational examples are given.

Corresponding author address: Shih-Nan Chen, Institute of Oceanography, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan. E-mail: schen77@ntu.edu.tw

Abstract

A recent numerical study by Isobe showed that imposing alongshore tidal forcing on buoyant coastal discharge enhances the net freshwater transport in the coastal currents. The mechanisms for this transport enhancement are studied using a three-dimensional, primitive equation ocean model [Regional Ocean Modeling System (ROMS)]. Lagrangian drifters are used to trace the freshwater transport paths. It is found that the river plume bulge circulation largely follows the rigid-body motion (i.e., constant vorticity). The buoyant fluid near the bulge’s outer edge is thinner and faster, behaving as a baroclinic jet. The bulge currents then split after impinging on the coast. The outer fluid feeds the downshelf-flowing coastal currents, while the inner fluid recirculates to form the bulge. The coastal current transport estimated from the present and prior studies corresponds well to a baroclinic jet theory, with the incident angle of bulge currents at the coast being a key parameter. Without tides, the bulge is approximately circular. The incident angle measured with respect to the cross-shore axis is small. With tides, the convergence of tidal momentum fluxes near the upshelf plume front leads to a positive pressure anomaly, which acts to compress the bulge shoreward. As a result, the incident angle increases, which in turn enhances the downshelf momentum input, thus increasing the freshwater transport in the coastal currents. Finally, the parameter space for coastal current transport in the presence of tidal forcing is explored with a conceptual model. A few observational examples are given.

Corresponding author address: Shih-Nan Chen, Institute of Oceanography, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan. E-mail: schen77@ntu.edu.tw
Save