• Allan, J. C., and P. D. Komar, 2006: Climate controls on US West Coast erosion processes. J. Coastal Res., 22, 511529, doi:10.2112/03-0108.1.

    • Search Google Scholar
    • Export Citation
  • Allen, J. S., and P. A. Newberger, 1996: Downwelling circulation on the Oregon continental shelf. Part I: Response to idealized forcing. J. Phys. Oceanogr., 26, 2011–2035, doi:10.1175/1520-0485(1996)026<2011:DCOTOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, A. J., and J. A. Barth, 2002a: Drifter behavior on the Oregon–Washington shelf during downwelling-favorable winds. J. Phys. Oceanogr., 32, 31323144, doi:10.1175/1520-0485(2002)032<3132:DBOTOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Austin, A. J., and J. A. Barth, 2002b: Variation in the position of the upwelling front on the Oregon shelf. J. Geophys. Res., 107, 3180, doi:10.1029/2001JC000858.

    • Search Google Scholar
    • Export Citation
  • Avicola, G., and P. Huq, 2003: The characteristics of the recirculating bulge region in coastal buoyant outflows. J. Mar. Res., 61, 435463, doi:10.1357/002224003322384889.

    • Search Google Scholar
    • Export Citation
  • Barnes, C. A., A. C. Duxbury, and B. A. Morse, 1972: Circulation and selected properties of the Columbia River effluent at sea. The Columbia River Estuary and Adjacent Ocean Waters: Bioenvironmental Studies, A. T. Pruter and D. L. Alverson, Eds., University of Washington Press, 41–80.

  • Barnes, S. L., 1994: Applications of the Barnes objective analysis scheme. Part I: Effects of undersampling, wave position, and station randomness. J. Atmos. Oceanic Technol., 11, 14331448, doi:10.1175/1520-0426(1994)011<1433:AOTBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barth, J. A., and P. A. Wheeler, 2005: Introduction to special section: Coastal advances in shelf transport. J. Geophys. Res., 110, C10S01, doi:10.1029/2005JC003124.

    • Search Google Scholar
    • Export Citation
  • Blanton, J. O., 1981: Ocean currents along a nearshore frontal zone on the continental shelf of the southeastern United States. J. Phys. Oceanogr., 11, 16271637, doi:10.1175/1520-0485(1981)011<1627:OCAANF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., 1987: Wind-driven motion near inner shelf fronts. J. Geophys. Res., 92, 3849–3860, doi:10.1029/JC092iC04p03849.

  • Chao, S.-Y., and W. C. Boicourt, 1986: Onset of estuarine plumes. J. Phys. Oceanogr., 16, 2137–2149, doi:10.1175/1520-0485(1986)016<2137:OOEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., and S. J. Lentz, 1994: Trapping of a coastal density front by the bottom boundary layer. J. Phys. Oceanogr., 24, 14641479, doi:10.1175/1520-0485(1994)024<1464:TOACDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chase, Z., P. G. Strutton, and B. Hales, 2007: Iron links river runoff and shelf width to phytoplankton biomass along the U.S. West Coast. Geophys. Res. Lett.,34, L04607, doi:10.1029/2006GL028069.

  • Cushman-Roisin, B., and J. M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. 2nd ed. Academic Press, 828 pp.

  • Eriksen, C. C., T. J. Osse, R. D. Light, T. Wen, T. W. Lehman, P. L. Sabin, J. W. Ballard, and A. M. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2001: The response of a river plume during an upwelling favorable wind event. J. Geophys. Res., 106, 10671084, doi:10.1029/2000JC900134.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., and W. R. Geyer, 2002: The alongshore transport of freshwater in a surface-trapped river plume. J. Phys. Oceanogr., 32, 957972, doi:10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., W. R. Geyer, and R. P. Signell, 1997: The wind-forced response of a buoyant coastal current: Observations of the western Gulf of Maine plume. J. Mar. Syst., 12, 6981, doi:10.1016/S0924-7963(96)00089-9.

    • Search Google Scholar
    • Export Citation
  • Garau, B., S. Ruiz, W. G. Zhang, A. Pascual, E. Heslop, J. Kerfoot, and J. Tintore, 2011: Thermal lag correction on Slocum CTD glider data. J. Atmos. Oceanic Technol., 28, 10651071, doi:10.1175/JTECH-D-10-05030.1.

    • Search Google Scholar
    • Export Citation
  • Garcia Berdeal, I., B. M. Hickey, and M. Kawase, 2002: Influence of wind stress and ambient flow on a high discharge river plume. J. Geophys. Res., 107, 3130, doi:10.1029/2001JC000932.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 1999: Penetration of buoyant coastal discharge onto the continental shelf: A numerical model experiment. J. Phys. Oceanogr., 29, 18921909, doi:10.1175/1520-0485(1999)029<1892:POBCDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garvine, R. W., 2004: The vertical structure and subtidal dynamics of the inner shelf off New Jersey. J. Mar. Res., 62, 337371, doi:10.1357/0022240041446182.

    • Search Google Scholar
    • Export Citation
  • Gerbi, G. P., R. J. Chant, and J. L. Wilkin, 2013: Breaking surface wave effects on river plume dynamics during upwelling favorable winds. J. Phys. Oceanogr., 43, 19591980, doi:10.1175/JPO-D-12-0185.1.

    • Search Google Scholar
    • Export Citation
  • Grant, W. D., and O. S. Madsen, 1979: Combined wave and current interaction with a rough bottom. J. Geophys. Res., 84, 1797–1808, doi:10.1029/JC084iC04p01797.

    • Search Google Scholar
    • Export Citation
  • Griffiths, R. W., and E. J. Hopfinger, 1983: Gravity currents moving along a lateral boundary in a rotating frame. J. Fluid Mech., 134, 357399, doi:10.1017/S0022112083003407.

    • Search Google Scholar
    • Export Citation
  • Hetland, R. D., 2005: Relating river plume structure to vertical mixing. J. Phys. Oceanogr., 35, 16671688, doi:10.1175/JPO2774.1.

  • Hickey, B. M., L. J. Pietrafesa, D. A. Jay, and W. C. Boicourt, 1998: The Columbia River plume study: Subtidal variability in the velocity and salinity fields. J. Geophys. Res., 103, 10 33910 368, doi:10.1029/97JC03290.

    • Search Google Scholar
    • Export Citation
  • Hickey, B. M., and Coauthors, 2010: River influences on shelf ecosystems: Introduction and synthesis. J. Geophys. Res., 115, C00B17, doi:10.1029/2009JC005452.

    • Search Google Scholar
    • Export Citation
  • Hill, A. E., 1998: Buoyancy effects in coastal and shelf seas. The Sea: The Global Coastal Ocean, A. R. Robinson and K. H. Brink, Eds., Regional Studies and Syntheses, Vol. 11, John Wiley and Sons, 63–88.

  • Huyer, A., 1977: Seasonal variation in temperature, salinity, and density over the continental shelf off Oregon. Limnol. Oceanogr., 22, 442453, doi:10.4319/lo.1977.22.3.0442.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., R. D. Pillsbury, and R. Smith, 1975: Seasonal variation of the alongshore velocity field over the continental shelf off Oregon. Limnol. Oceanogr., 20, 9095, doi:10.4319/lo.1975.20.1.0090.

    • Search Google Scholar
    • Export Citation
  • Huyer, A., R. L. Smith, and E. J. C. Sobey, 1978: Seasonal differences in low-frequency current fluctuations over the Oregon continental shelf. J. Geophys. Res., 83, 50775089, doi:10.1029/JC083iC10p05077.

    • Search Google Scholar
    • Export Citation
  • Jones, E. L., 1918: The Neglected Waters of the Pacific Coast, Washington, Oregon, and California. U.S. Coast and Geodetic Survey Series, No. 48, U.S. Government Printing Office, 21 pp.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., 2004: The response of buoyant coastal plumes to upwelling-favorable winds. J. Phys. Oceanogr., 34, 2458–2469, doi:10.1175/JPO2647.1.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and C. D. Winant, 1986: Subinertial currents on the southern California shelf. J. Phys. Oceanogr., 16, 17371750, doi:10.1175/1520-0485(1986)016<1737:SCOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and K. R. Helfrich, 2002: Buoyant gravity currents along a sloping bottom in a rotating fluid. J. Fluid Mech., 464, 251278, doi:10.1017/S0022112002008868.

    • Search Google Scholar
    • Export Citation
  • Lentz, S. J., and J. Largier, 2006: The influence of wind forcing on the Chesapeake Bay buoyant coastal current. J. Phys. Oceanogr., 36, 1305–1316, doi:10.1175/JPO2909.1.

    • Search Google Scholar
    • Export Citation
  • Margules, M., 1906: Über Temperaturschichtung in stationär bewegter und in ruhender Luft. Meteor. Z., 23, 243254.

  • Matano, R. P., and E. D. Palma, 2010: The upstream spreading of bottom-trapped plumes. J. Phys. Oceanogr., 40, 1631–1650, doi:10.1175/2010JPO4351.1.

    • Search Google Scholar
    • Export Citation
  • Mazzini, P. L. F., C. Risien, and J. A. Barth, 2011: Observations of anomalous near-surface low-salinity pulses off the central Oregon coast. Extended Abstracts, 58th Eastern Pacific Ocean Conf., South Lake Tahoe, CA, University of California, Santa Cruz. [Available online at http://oceandatacenter.ucsc.edu/EPOC/EPOC2011_ABSTRACTS.pdf.]

  • Moffat, C., and S. J. Lentz, 2012: On the response of a buoyant plume to downwelling-favorable wind stress. J. Phys. Oceanogr., 42, 10831098, doi:10.1175/JPO-D-11-015.1.

    • Search Google Scholar
    • Export Citation
  • Mork, M., 1981: Circulation phenomena and frontal dynamics of the Norwegian Coastal Current. Philos. Trans. Roy. Soc., A302, 635648, doi:10.1098/rsta.1981.0188.

    • Search Google Scholar
    • Export Citation
  • Münchow, A., and R. Garvine, 1993a: Buoyancy and wind forcing of a coastal current. J. Mar. Res., 51, 293322, doi:10.1357/0022240933223747.

    • Search Google Scholar
    • Export Citation
  • Münchow, A., and R. Garvine, 1993b: Dynamical properties of a buoyancy driven coastal current. J. Geophys. Res., 98, 20 06320 077, doi:10.1029/93JC02112.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., and J. N. Moum, 2005: River plumes as a source of large-amplitude internal waves in the coastal ocean. Nature, 437, 400403, doi:10.1038/nature03936.

    • Search Google Scholar
    • Export Citation
  • Pennel, R., A. Stegner, and K. Branger, 2012: Shelf impact on buoyant coastal current instabilities. J. Phys. Oceanogr., 42, 3961, doi:10.1175/JPO-D-11-016.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, S. D., J. A. Barth, R. E. Thomas, and G. W. Fleischer, 2006: Anomalously warm July 2005 in the northern California Current: Historical context and the significance of cumulative wind stress. Geophys. Res. Lett., 33, L22S04, doi:10.1029/2006GL027149.

    • Search Google Scholar
    • Export Citation
  • Pimenta, F. M., and J. A. D. Kirwan, 2014: The response of large outflows to wind forcing. Cont. Shelf Res., doi:10.1016/j.csr.2013.11.006, in press.

    • Search Google Scholar
    • Export Citation
  • Pimenta, F. M., J. A. D. Kirwan, and P. Huq, 2011: On the transport of buoyant coastal plumes. J. Phys. Oceanogr., 41, 620640, doi:10.1175/2010JPO4473.1.

    • Search Google Scholar
    • Export Citation
  • Royer, T., 1981: Baroclinic transport in the Gulf of Alaska. Part I. Seasonal variations of the Alaska Current. J. Mar. Res., 39, 239250.

    • Search Google Scholar
    • Export Citation
  • Schofield, O., and Coauthors, 2007: Slocum gliders: Robust and ready. J. Field Rob.,24, 473–485, doi:10.1002/rob.20200.

  • Thomas, A. C., and R. A. Weatherbee, 2006: Satellite-measured temporal variability of the Columbia River plume. Remote Sens. Environ., 100, 167178, doi:10.1016/j.rse.2005.10.018.

    • Search Google Scholar
    • Export Citation
  • Whitney, M. M., and R. W. Garvine, 2005: Wind influence on the Delaware buoyant outflow. J. Geophys. Res., 110, C03014, doi:10.1029/2003JC002261.

    • Search Google Scholar
    • Export Citation
  • Yankovsky, A. E., 2006: On the validity of thermal wind balance in alongshelf currents off the New Jersey coast. Cont. Shelf Res., 26, 11711183, doi:10.1016/j.csr.2006.03.008.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 281 203 4
PDF Downloads 235 168 3

Buoyancy-Driven Coastal Currents off Oregon during Fall and Winter

View More View Less
  • 1 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon
Restricted access

Abstract

During fall/winter off the Oregon coast, oceanographic surveys are relatively scarce because of rough weather conditions. This challenge has been overcome by the use of autonomous underwater gliders deployed along the Newport hydrographic line (NH-Line) nearly continuously since 2006. The discharge from the coastal rivers between northern California and the NH-Line reach several thousands of cubic meters per second, and the peaks are comparable to the discharge from the Columbia River. This freshwater input creates cross-shelf density gradients that together with the wind forcing and the large-scale Davidson Current results in strong northward velocities over the shelf. A persistent coastal current during fall/winter, which the authors call the Oregon Coastal Current (OCC), has been revealed by the glider dataset. Based on a two-layer model, the dominant forcing mechanism of the OCC is buoyancy, followed by the Davidson Current and then the wind stress, accounting for 61% (±22.6%), 26% (±18.6%), and 13% (±11.7%) of the alongshore transports, respectively. The OCC average velocities vary from 0.1 to over 0.5 m s−1, and transports are on average 0.08 (±0.07) Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1), with the maximum observed value of 0.49 Sv, comparable to the summertime upwelling jet off the Oregon coast. The OCC is a surface-trapped coastal current, and its geometry is highly affected by the wind stress, consistent with Ekman dynamics. The wind stress has an overall small direct contribution to the alongshore transport; however, it plays a primary role in modifying the OCC structure. The OCC is a persistent, key component of the fall/winter shelf dynamics and influences the ocean biogeochemistry off the Oregon coast.

Corresponding author address: Piero L. F. Mazzini, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, OR 97331-5503. E-mail: pmazzini@coas.oregonstate.edu

Abstract

During fall/winter off the Oregon coast, oceanographic surveys are relatively scarce because of rough weather conditions. This challenge has been overcome by the use of autonomous underwater gliders deployed along the Newport hydrographic line (NH-Line) nearly continuously since 2006. The discharge from the coastal rivers between northern California and the NH-Line reach several thousands of cubic meters per second, and the peaks are comparable to the discharge from the Columbia River. This freshwater input creates cross-shelf density gradients that together with the wind forcing and the large-scale Davidson Current results in strong northward velocities over the shelf. A persistent coastal current during fall/winter, which the authors call the Oregon Coastal Current (OCC), has been revealed by the glider dataset. Based on a two-layer model, the dominant forcing mechanism of the OCC is buoyancy, followed by the Davidson Current and then the wind stress, accounting for 61% (±22.6%), 26% (±18.6%), and 13% (±11.7%) of the alongshore transports, respectively. The OCC average velocities vary from 0.1 to over 0.5 m s−1, and transports are on average 0.08 (±0.07) Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1), with the maximum observed value of 0.49 Sv, comparable to the summertime upwelling jet off the Oregon coast. The OCC is a surface-trapped coastal current, and its geometry is highly affected by the wind stress, consistent with Ekman dynamics. The wind stress has an overall small direct contribution to the alongshore transport; however, it plays a primary role in modifying the OCC structure. The OCC is a persistent, key component of the fall/winter shelf dynamics and influences the ocean biogeochemistry off the Oregon coast.

Corresponding author address: Piero L. F. Mazzini, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, OR 97331-5503. E-mail: pmazzini@coas.oregonstate.edu
Save