Variability of the Deep-Water Overflow in the Luzon Strait

Chun Zhou Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Chun Zhou in
Current site
Google Scholar
PubMed
Close
,
Wei Zhao Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Wei Zhao in
Current site
Google Scholar
PubMed
Close
,
Jiwei Tian Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Jiwei Tian in
Current site
Google Scholar
PubMed
Close
,
Qingxuan Yang Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao, China

Search for other papers by Qingxuan Yang in
Current site
Google Scholar
PubMed
Close
, and
Tangdong Qu International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i, Honolulu, Hawai‘i

Search for other papers by Tangdong Qu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Luzon Strait, with its deepest sills at the Bashi Channel and Luzon Trough, is the only deep connection between the Pacific Ocean and the South China Sea (SCS). To investigate the deep-water overflow through the Luzon Strait, 3.5 yr of continuous mooring observations have been conducted in the deep Bashi Channel and Luzon Trough. For the first time these observations enable us to assess the detailed variability of the deep-water overflow from the Pacific to the SCS. On average, the along-stream velocity of the overflow is at its maximum at about 120 m above the ocean bottom, reaching 19.9 ± 6.5 and 23.0 ± 11.8 cm s−1 at the central Bashi Channel and Luzon Trough, respectively. The velocity measurements can be translated to a mean volume transport for the deep-water overflow of 0.83 ± 0.46 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at the Bashi Channel and 0.88 ± 0.77 Sv at the Luzon Trough. Significant intraseasonal and seasonal variations are identified, with their dominant time scales ranging between 20 and 60 days and around 100 days. The intraseasonal variation is season dependent, with its maximum strength taking place in March–May. Deep-water eddies are believed to play a role in this intraseasonal variation. On the seasonal time scale, the deep-water overflow intensifies in late fall (October–December) and weakens in spring (March–May), corresponding well with the seasonal variation of the density difference between the Pacific and SCS, for which enhanced mixing in the deep SCS is possibly responsible.

School of Ocean and Earth Science and Technology Publication Number 9196 and International Pacific Research Center Publication Number IPRC-1076.

Corresponding author address: Jiwei Tian, 238 Songling Road, Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China. E-mail: tianjw@ouc.edu.cn

Abstract

The Luzon Strait, with its deepest sills at the Bashi Channel and Luzon Trough, is the only deep connection between the Pacific Ocean and the South China Sea (SCS). To investigate the deep-water overflow through the Luzon Strait, 3.5 yr of continuous mooring observations have been conducted in the deep Bashi Channel and Luzon Trough. For the first time these observations enable us to assess the detailed variability of the deep-water overflow from the Pacific to the SCS. On average, the along-stream velocity of the overflow is at its maximum at about 120 m above the ocean bottom, reaching 19.9 ± 6.5 and 23.0 ± 11.8 cm s−1 at the central Bashi Channel and Luzon Trough, respectively. The velocity measurements can be translated to a mean volume transport for the deep-water overflow of 0.83 ± 0.46 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) at the Bashi Channel and 0.88 ± 0.77 Sv at the Luzon Trough. Significant intraseasonal and seasonal variations are identified, with their dominant time scales ranging between 20 and 60 days and around 100 days. The intraseasonal variation is season dependent, with its maximum strength taking place in March–May. Deep-water eddies are believed to play a role in this intraseasonal variation. On the seasonal time scale, the deep-water overflow intensifies in late fall (October–December) and weakens in spring (March–May), corresponding well with the seasonal variation of the density difference between the Pacific and SCS, for which enhanced mixing in the deep SCS is possibly responsible.

School of Ocean and Earth Science and Technology Publication Number 9196 and International Pacific Research Center Publication Number IPRC-1076.

Corresponding author address: Jiwei Tian, 238 Songling Road, Physical Oceanography Laboratory/Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, China. E-mail: tianjw@ouc.edu.cn
Save
  • Alford, M. H., and R. Pinkel, 2000: Observations of overturning in the thermocline: The context of ocean mixing. J. Phys. Oceanogr., 30, 805832, doi:10.1175/1520-0485(2000)030<0805:OOOITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and M. Whitmont, 2007: Seasonal and spatial variability of near-inertial kinetic energy from historical moored velocity records. J. Phys. Oceanogr., 37, 20222037, doi:10.1175/JPO3106.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Arhan, M., X. Carton, A. Piola, and W. Zenk, 2002: Deep lenses of circumpolar water in the Argentine basin. J. Geophys. Res., 107, doi:10.1029/2001JC000963.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., and Coauthors, 2009: World Ocean Database 2009. S. Levitus, Ed., NOAA Atlas NESDIS 66, 216 pp.

  • Broecker, W. S., W. C. Patzert, J. R. Toggweiler, and M. Stuvier, 1986: Hydrography, chemistry, and radioisotopes in the Southeast Asian basin. J. Geophys. Res., 91, 14 34514 354, doi:10.1029/JC091iC12p14345.

    • Search Google Scholar
    • Export Citation
  • Chang, Y.-T., W.-L. Hsu, J.-H. Tai, T.-Y. Tang, M.-H. Chang, and S.-Y. Chao, 2010: Cold deep water in the South China Sea. J. Oceanogr., 66, 183190, doi:10.1007/s10872-010-0016-x.

    • Search Google Scholar
    • Export Citation
  • Dillon, T. M., 1982: Vertical overturns: A comparison of Thorpe and Ozmidov length scales. J. Geophys. Res., 87, 96019613, doi:10.1029/JC087iC12p09601.

    • Search Google Scholar
    • Export Citation
  • Galbraith, P. S., and D. E. Kelley, 1996: Identifying overturns in CTD profiles. J. Atmos. Oceanic Technol., 13, 688702, doi:10.1175/1520-0426(1996)013<0688:IOICP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A., and T. Garner, 2008: Determining Thorpe scales from ship-lowered CTD density profiles. J. Atmos. Oceanic Technol., 25, 16571670, doi:10.1175/2008JTECHO541.1.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi, 2012: South China Sea Throughflow impact on the Indonesian Throughflow. Geophys. Res. Lett., 39, L11602, doi:10.1029/2012GL052021.

    • Search Google Scholar
    • Export Citation
  • Hamilton, P., 2009: Topographic Rossby waves in the Gulf of Mexico. Prog. Oceanogr.,82, 1–31, doi:10.1016/j.pocean.2009.04.019.

  • Hansen, B., and S. Østerhus, 2000: North Atlantic–Nordic Seas exchanges. Prog. Oceanogr., 45, 109208, doi:10.1016/S0079-6611(99)00052-X.

    • Search Google Scholar
    • Export Citation
  • Hogg, N., G. Siedler, and W. Zenk, 1999: Circulation and variability at the southern boundary of the Brazil basin. J. Phys. Oceanogr., 29, 145157, doi:10.1175/1520-0485(1999)029<0145:CAVATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Høyer, J. L., and D. Quadfasel, 2001: Detection of deep overflows with satellite altimetry. Geophys. Res. Lett., 28, 16111614, doi:10.1029/2000GL012549.

    • Search Google Scholar
    • Export Citation
  • Liu, C.-T., and R.-J. Liu, 1988: The deep current in the Bashi Channel. Acta Oceanogr. Taiwan, 20, 107116.

  • Mercier, H., and K. G. Speer, 1998: Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone. J. Phys. Oceanogr., 28, 779790, doi:10.1175/1520-0485(1998)028<0779:TOBWIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meredith, M. P., and Coauthors, 2011: Sustained monitoring of the Southern Ocean at Drake Passage: Past achievements and future priorities. Rev. Geophys., 49, RG4005, doi:10.1029/2010RG000348.

    • Search Google Scholar
    • Export Citation
  • Metzger, E. J., and H. E. Hurlburt, 1996: Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. J. Geophys. Res., 101, 12 33112 352, doi:10.1029/95JC03861.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., 2000: Upper-layer circulation in the South China Sea. J. Phys. Oceanogr., 30, 14501460, doi:10.1175/1520-0485(2000)030<1450:ULCITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Kim, M. Yaremchuk, T. Tozuka, A. Ishida, and T. Yamagata, 2004: Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea? J. Climate, 17, 36443657, doi:10.1175/1520-0442(2004)017<3644:CLSTPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, G. Meyers, A. Ishida, and D. Wang, 2005: Connecting the tropical Pacific with Indian Ocean through South China Sea. Geophys. Res. Lett., 32, L24609, doi:10.1029/2005GL024698.

    • Search Google Scholar
    • Export Citation
  • Qu, T., Y. Du, and H. Sasaki, 2006a: South China Sea Throughflow: A heat and freshwater conveyor. Geophys. Res. Lett., 33, L23617, doi:10.1029/2006GL028350.

    • Search Google Scholar
    • Export Citation
  • Qu, T., J. B. Girton, and J. A. Whitehead, 2006b: Deepwater overflow through Luzon Strait. J. Geophys. Res., 111, C01002, doi:10.1029/2005JC003139.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D., 1997: Direct velocity measurements in the Samoan Passage. J. Geophys. Res., 102, 32933302, doi:10.1029/96JC03286.

  • Smith, W. H. F., and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Song, Y. T., 2006: Estimation of interbasin transport using ocean bottom pressure: Theory and model for Asian marginal seas. J. Geophys. Res., 111, C11S19, doi:10.1029/2005JC003189.

    • Search Google Scholar
    • Export Citation
  • Thierry, V., A. M. Treguier, and H. Mercier, 2006: Seasonal fluctuations in the deep central equatorial Atlantic Ocean: A data–model comparison. Ocean Dyn., 56, 581593, doi:10.1007/s10236-005-0045-y.

    • Search Google Scholar
    • Export Citation
  • Thorpe, S., 1977: Turbulence and mixing in a Scottish Loch. Philos. Trans. Roy. Soc. London,A286, 125181, doi:10.1098/rsta.1977.0112.

    • Search Google Scholar
    • Export Citation
  • Tian, J., and T. Qu, 2012: Advances in research on the deep South China Sea circulation. Chin. Sci. Bull., 57, 31153120, doi:10.1007/s11434-012-5269-x.

    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang, and T. Qu, 2006: Observation of Luzon Strait transport. Geophys. Res. Lett., 33, L19607, doi:10.1029/2006GL026272.

    • Search Google Scholar
    • Export Citation
  • Tian, J., Q. Yang, and W. Zhao, 2009: Enhanced diapycnal mixing in the South China Sea. J. Phys. Oceanogr., 39, 31913203, doi:10.1175/2009JPO3899.1.

    • Search Google Scholar
    • Export Citation
  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Qu, and T. Yamagata, 2007: Dramatic impact of the South China Sea on the Indonesian Throughflow. Geophys. Res. Lett., 34, L12612, doi:10.1029/2007GL030420.

    • Search Google Scholar
    • Export Citation
  • Tozuka, T., T. Qu, Y. Masumoto, and T. Yamagata, 2009: Impacts of the South China Sea Throughflow on seasonal and interannual variations the Indonesian Throughflow. Dyn. Atmos. Oceans, 47, 7385, doi:10.1016/j.dynatmoce.2008.09.001.

    • Search Google Scholar
    • Export Citation
  • Wang, J., 1986: Observation of abyssal flows in the northern South China Sea. Acta Oceanogr. Taiwan, 16, 3645.

  • Wyrtki, K., 1961: Physical oceanography of the Southeast Asian waters. Naga Rep. 2, 195 pp.

  • Yang, Q., J. Tian, and W. Zhao, 2010: Observation of Luzon Strait transport in summer 2007. Deep-Sea Res. I, 57, 670676, doi:10.1016/j.dsr.2010.02.004.

    • Search Google Scholar
    • Export Citation
  • Yang, Q., J. Tian, and W. Zhao, 2011: Observation of material fluxes through the Luzon Strait. Chin. J. Oceanol. Limnol., 29, 26–32, doi:10.1007/s00343-011-9952-6.

    • Search Google Scholar
    • Export Citation
  • Yaremchuk, M., and T. Qu, 2004: Seasonal variability of the large-scale currents near the coast of the Philippines. J. Phys. Oceanogr., 34, 844855, doi:10.1175/1520-0485(2004)034<0844:SVOTLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., 2008: Temperature fluctuations and current shear in Antarctic Bottom Water at the Vema Sill. Prog. Oceanogr., 77, 276284, doi:10.1016/j.pocean.2006.05.006.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., K. G. Speer, and N. G. Hogg, 1993: Bathymetry at the Vema Sill. Deep-Sea Res. I, 40, 19251933, doi:10.1016/0967-0637(93)90038-5.

    • Search Google Scholar
    • Export Citation
  • Zenk, W., G. Siedler, B. Lenz, and N. G. Hogg, 1999: Antarctic Bottom Water flow through the Hunter Channel. J. Phys. Oceanogr., 29, 27852801, doi:10.1175/1520-0485(1999)029<2785:ABWFTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, W., C. Zhou, J. Tian, Q. Yang, B. Wang, L. Xie, and T. Qu, 2014: Deep water circulation in the Luzon Strait. J. Geophys. Res., 119, 790804, doi:10.1002/2013JC009587.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 789 320 37
PDF Downloads 570 221 25