Lateral Heat Exchange after the Labrador Sea Deep Convection in 2008

Weiwei Zhang School of Marine Science and Policy, University of Delaware, Newark, Delaware

Search for other papers by Weiwei Zhang in
Current site
Google Scholar
PubMed
Close
and
Xiao-Hai Yan University of Delaware and Xiamen University Joint Institute of Coastal Research and Management, and School of Marine Science and Policy, University of Delaware, Newark, Delaware

Search for other papers by Xiao-Hai Yan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The mechanisms through which convected water restratifies in the Labrador Sea are still under debate. The Labrador Sea restratification after deep convection in the 2007/08 winter is studied with an eddy-resolving numerical model. The modeled mixed layer depth during wintertime resembles the Argo observed mixed layer very well, and the lateral heat flux during the subsequent restratification is in line with observations. The Irminger rings (IRs) are reproduced with fresher caps above the 300-m depths, and they are identified and tracked automatically. The model underestimates both the number of IRs in the convection area and the heat they carry. The underestimation is most likely caused by the errors in the direction of the west Greenland currents in the model, which causes more IRs propagating westward, and only the IRs originating south of 61.5°N are able to propagate southward, yet with speed much slower than observed speed. The model still observed three eddies propagating into the convection area during the restratification phase in 2008, and their thermal contribution ranges from 1% to 4% if the estimation is made at the time when they enter the convection area. If all newly generated eddies are considered, then the ensemble-mean contributions by the IRs become 5.3%. The more detailed and direct heat flux by IRs is difficult to derive because of the strong fluctuation of the identified eddy radius. Nevertheless, the modeled lateral heat flux is largely composed of the boundary current eddies and convective eddies, thus it is possible for the model to maintain an acceptable thermal balance.

Corresponding author address: Dr. Xiao-Hai Yan, School of Marine Science and Policy, University of Delaware, 261 S College Avenue, Newark, DE 19716. E-mail: xiaohai@udel.edu.

Abstract

The mechanisms through which convected water restratifies in the Labrador Sea are still under debate. The Labrador Sea restratification after deep convection in the 2007/08 winter is studied with an eddy-resolving numerical model. The modeled mixed layer depth during wintertime resembles the Argo observed mixed layer very well, and the lateral heat flux during the subsequent restratification is in line with observations. The Irminger rings (IRs) are reproduced with fresher caps above the 300-m depths, and they are identified and tracked automatically. The model underestimates both the number of IRs in the convection area and the heat they carry. The underestimation is most likely caused by the errors in the direction of the west Greenland currents in the model, which causes more IRs propagating westward, and only the IRs originating south of 61.5°N are able to propagate southward, yet with speed much slower than observed speed. The model still observed three eddies propagating into the convection area during the restratification phase in 2008, and their thermal contribution ranges from 1% to 4% if the estimation is made at the time when they enter the convection area. If all newly generated eddies are considered, then the ensemble-mean contributions by the IRs become 5.3%. The more detailed and direct heat flux by IRs is difficult to derive because of the strong fluctuation of the identified eddy radius. Nevertheless, the modeled lateral heat flux is largely composed of the boundary current eddies and convective eddies, thus it is possible for the model to maintain an acceptable thermal balance.

Corresponding author address: Dr. Xiao-Hai Yan, School of Marine Science and Policy, University of Delaware, 261 S College Avenue, Newark, DE 19716. E-mail: xiaohai@udel.edu.
Save
  • Barnier, B., L. Siefridt, and P. Marchesiello, 1995: Thermal forcing for a global ocean circulation model using a three-year climatology of ECMWF analysis. J. Mar. Syst., 6, 363380, doi:10.1016/0924-7963(94)00034-9.

    • Search Google Scholar
    • Export Citation
  • Bracco, A., J. Pedlosky, and R. S. Pickart, 2008: Eddy formation near the west coast of Greenland. J. Phys. Oceanogr., 38, 19922002, doi:10.1175/2008JPO3669.1.

    • Search Google Scholar
    • Export Citation
  • Brandt, P., F. Schott, A. Funk, and C. Martins, 2004: Seasonal to interannual variability of the eddy field in the Labrador Sea from satellite altimetry. J. Geophys. Res., 109, C02028, doi:10.1029/2002JC001551.

    • Search Google Scholar
    • Export Citation
  • Carnevale, G. F., R. C. Kloosterziel, and G. J. F. van Heijst, 1991: Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech., 233, 119139, doi:10.1017/S0022112091000411.

    • Search Google Scholar
    • Export Citation
  • Carton, J. A., and B. S. Giese, 2008: A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev., 136, 29993017, doi:10.1175/2007MWR1978.1.

    • Search Google Scholar
    • Export Citation
  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines, and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr., 38, 16171643, doi:10.1175/2008JPO3485.1.

    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, P. P. Niiler, and S. Bacon, 2002: Labrador Sea boundary currents and the fate of the Irminger Sea Water. J. Phys. Oceanogr., 32, 627647, doi:10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Jong, M. F., A. S. Bower, and H. H. Furey, 2014: Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification. J. Phys. Oceanogr., 44, 427444, doi:10.1175/JPO-D-13-070.1.

    • Search Google Scholar
    • Export Citation
  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, doi:10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Funk, A., P. Brandt, and T. Fischer, 2009: Eddy diffusivities estimated from observations in the Labrador Sea. J. Geophys. Res., 114, C04001, doi:10.1029/2008JC005098.

    • Search Google Scholar
    • Export Citation
  • Gelderloos, R., C. A. Katsman, and S. S. Drijfhout, 2011: Assessing the roles of three eddy types in restratifying the Labrador Sea after deep convection. J. Phys. Oceanogr., 41, 21022119, doi:10.1175/JPO-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., H. Arango, K. Hedstrom, A. Beckmann, P. Malanotte-Rizzoli, and A. Shchepetkin, 2000: Model evaluation experiments in the North Atlantic basin: Simulations in nonlinear terrain-following coordinates. Dyn. Atmos. Oceans, 32, 239281, doi:10.1016/S0377-0265(00)00049-X.

    • Search Google Scholar
    • Export Citation
  • Haney, R., 1991: On the pressure gradient force over steep topography in sigma coordinate ocean models. J. Phys. Oceanogr., 21, 610619, doi:10.1175/1520-0485(1991)021<0610:OTPGFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hátún, H., C. C. Eriksen, and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, doi:10.1175/2007JPO3567.1.

    • Search Google Scholar
    • Export Citation
  • Jones, H., and J. Marshall, 1993: Convection with rotation in a neutral ocean: A study of open-ocean deep convection. J. Phys. Oceanogr., 23, 10091039, doi:10.1175/1520-0485(1993)023<1009:CWRIAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, H., and J. Marshall, 1997: Restratification after deep convection. J. Phys. Oceanogr., 27, 22762287, doi:10.1175/1520-0485(1997)027<2276:RADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643, doi:10.1175/BAMS-83-11-1631.

    • Search Google Scholar
    • Export Citation
  • Katsman, C., M. Spall, and R. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34, 19671983, doi:10.1175/1520-0485(2004)034<1967:BCEATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Large, W., J. McWilliams, and S. Doney, 1994: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys., 32, 363403, doi:10.1029/94RG01872.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurement. Nature, 407, 6669, doi:10.1038/35024048.

    • Search Google Scholar
    • Export Citation
  • Lavender, K. L., R. E. Davis, and W. B. Owens, 2002: Observations of open-ocean deep convection in the Labrador Sea from subsurface floats. J. Phys. Oceanogr., 32, 511526, doi:10.1175/1520-0485(2002)032<0511:OOOODC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lazier, J., 1973: The renewal of Labrador Sea Water. Deep-Sea Res. Oceanogr. Abstr., 20, 341353, doi:10.1016/0011-7471(73)90058-2.

  • Legg, S., and J. C. McWilliams, 2001: Convective modifications of a geostrophic eddy field. J. Phys. Oceanogr., 31, 874891, doi:10.1175/1520-0485(2001)031<0874:CMOAGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Legg, S., J. C. McWilliams, and J. Gao, 1998: Localization of deep ocean convection by a mesoscale eddy. J. Phys. Oceanogr., 28, 944970, doi:10.1175/1520-0485(1998)028<0944:LODOCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, J., P. Rhines, M. Visbeck, R. Davis, J. Lazier, F. Schott, and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/95. J. Phys. Oceanogr., 29, 20652098, doi:10.1175/1520-0485(1999)029<2065:ODCITL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, J., P. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr., 59, 75176, doi:10.1016/j.pocean.2003.08.013.

    • Search Google Scholar
    • Export Citation
  • Luo, H., A. Bracco, and E. Di Lorenzo, 2011: The interannual variability of the surface eddy kinetic energy in the Labrador Sea. Prog. Oceanogr., 91, 295311, doi:10.1016/j.pocean.2011.01.006.

    • Search Google Scholar
    • Export Citation
  • Luo, H., A. Bracco, I. Yashayaev, and E. Di Lorenzo, 2012: The interannual variability of potential temperature in the central Labrador Sea. J. Geophys. Res., 117, C10016, doi:10.1029/2012JC007988.

    • Search Google Scholar
    • Export Citation
  • Marchesiello, P., J. C. McWilliams, and A. Shchepetkin, 2001: Open boundary conditions for long-term integration of regional oceanic models. Ocean Modell., 3, 120, doi:10.1016/S1463-5003(00)00013-5.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and F. Schott, 1999: Open-ocean convection: Observations, theory, and models. Rev. Geophys., 37, 164, doi:10.1029/98RG02739.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., and Coauthors, 1998: The Labrador Sea deep convection experiment. Bull. Amer. Meteor. Soc., 79, 20332058, doi:10.1175/1520-0477(1998)079<2033:TLSDCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McGeehan, T., and W. Maslowski, 2011: Impact of shelf basin freshwater transport on deep convection in the western Labrador Sea. J. Phys. Oceanogr., 41, 21872210, doi:10.1175/JPO-D-11-01.1.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1970: Horizontal dispersion of floatable particles in vicinity of velocity singularities such as convergences. Deep-Sea Res. Oceanogr. Abstr., 17, 445454, doi:10.1016/0011-7471(70)90059-8.

    • Search Google Scholar
    • Export Citation
  • Penven, P., P. Marchesiello, L. Debreu, and J. Lefevre, 2008: Software tools for pre- and post-processing of oceanic regional simulations. Environ. Modell. Software, 23, 660662, doi:10.1016/j.envsoft.2007.07.004.

    • Search Google Scholar
    • Export Citation
  • Pickart, R., D. Torres, and R. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, doi:10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prater, M., 2002: Eddies in the Labrador Sea as observed by profiling RAFOS floats and remote sensing. J. Phys. Oceanogr., 32, 411427, doi:10.1175/1520-0485(2002)032<0411:EITLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108, 4407, doi:10.1029/2002JD002670.

    • Search Google Scholar
    • Export Citation
  • Renfrew, I., G. Moore, P. Guest, and K. Bumke, 2002: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr., 32, 383400, doi:10.1175/1520-0485(2002)032<0383:ACOSLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rykova, T., F. Straneo, J. M. Lilly, and I. Yashayaev, 2009: Irminger Current anticyclones in the Labrador Sea observed in the hydrographic record, 1990–2004. J. Mar. Res., 67, 361384, doi:10.1357/002224009789954739.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A., and J. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Smith, W., and D. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Song, Y., and D. Haidvogel, 1994: A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115, 228244, doi:10.1006/jcph.1994.1189.

    • Search Google Scholar
    • Export Citation
  • Spall, M., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, doi:10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M., and R. S. Pickart, 2003: Wind-driven recirculations and exchange in the Labrador and Irminger Seas. J. Phys. Oceanogr., 33, 18291845, doi:10.1175/2384.1.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606628, doi:10.1175/JPO2875.1.

    • Search Google Scholar
    • Export Citation
  • Våge, K., and Coauthors, 2009: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter 2007–2008. Nat. Geosci., 2, 6772, doi:10.1038/ngeo382.

    • Search Google Scholar
    • Export Citation
  • Weiss, J., 1991: The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D, 48, 273294, doi:10.1016/0167-2789(91)90088-Q.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2009: Enhanced production of Labrador Sea Water in 2008. Geophys. Res. Lett., 36, L01606, doi:10.1029/2008GL036162.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 171 31 3
PDF Downloads 93 20 1