Spectral Evolution of Nearshore Wave Energy during a Sea-Breeze Cycle

Jim Gunson CSIRO Marine and Atmospheric Research, and CSIRO Wealth from Oceans Flagship, Floreat, Western Australia, Australia

Search for other papers by Jim Gunson in
Current site
Google Scholar
PubMed
Close
and
Graham Symonds CSIRO Marine and Atmospheric Research, and CSIRO Wealth from Oceans Flagship, Floreat, Western Australia, Australia

Search for other papers by Graham Symonds in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

From in situ measurements taken over several sea-breeze cycles off a beach in southwest (SW) Australia, the evolution of the one-dimensional spectrum of wave energy is observed to have a distinctive spectral shape. During the land-breeze phase of the cycle, lower rates of dissipation of wave energy are seen at high frequencies compared to midrange frequencies above the remnant wind-sea peak. A simulation of waves was performed using the Simulating Waves Nearshore (SWAN) model and produced the same spectral evolution, by generating longshore modes, as seen in the observations. The performance of whitecapping schemes available in SWAN was assessed, and the Alves–Banner scheme was found to best simulate the observed growth and decay of the wave spectra. During the onshore phase of the sea-breeze cycle, local wave growth is duration limited, and during the offshore land-breeze phase, wave growth is fetch limited. From an examination of the modeled two-dimensional spectra it is found that quadruplet interactions play a key role in spreading high-frequency wave energy in frequency and direction space.

Corresponding author address: Jim Gunson, CSIRO Marine and Atmospheric Research, Underwood Ave., Floreat WA 6014, Australia. E-mail: jim.gunson@csiro.au

Abstract

From in situ measurements taken over several sea-breeze cycles off a beach in southwest (SW) Australia, the evolution of the one-dimensional spectrum of wave energy is observed to have a distinctive spectral shape. During the land-breeze phase of the cycle, lower rates of dissipation of wave energy are seen at high frequencies compared to midrange frequencies above the remnant wind-sea peak. A simulation of waves was performed using the Simulating Waves Nearshore (SWAN) model and produced the same spectral evolution, by generating longshore modes, as seen in the observations. The performance of whitecapping schemes available in SWAN was assessed, and the Alves–Banner scheme was found to best simulate the observed growth and decay of the wave spectra. During the onshore phase of the sea-breeze cycle, local wave growth is duration limited, and during the offshore land-breeze phase, wave growth is fetch limited. From an examination of the modeled two-dimensional spectra it is found that quadruplet interactions play a key role in spreading high-frequency wave energy in frequency and direction space.

Corresponding author address: Jim Gunson, CSIRO Marine and Atmospheric Research, Underwood Ave., Floreat WA 6014, Australia. E-mail: jim.gunson@csiro.au
Save
  • Abbs, D. J., and W. L. Physick, 1992: Sea-breeze observations and modelling: A review. Aust. Meteor. Mag., 41, 719.

  • Alves, J. H. G. M., and M. L. Banner, 2003: Performance of a saturation-based dissipation-rate source term in modelling the fetch-limited evolution of wind waves. J. Phys. Oceanogr., 33, 12741298, doi:10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., T. H. C. Herbers, G. P. van Vledder, K. P. Watts, R. Jensen, and H. C. Graber, 2007: Swell and slanting-fetch effects on wind wave growth. J. Phys. Oceanogr., 37, 908931, doi:10.1175/JPO3039.1.

    • Search Google Scholar
    • Export Citation
  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration, and validation. J. Phys. Oceanogr., 40, 19171941, doi:10.1175/2010JPO4324.1.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and Y. P. Soloviev, 1998: Field investigation of transformation of the wind wave frequency spectrum with fetch and the stage of development. J. Phys. Oceanogr., 28, 563576, doi:10.1175/1520-0485(1998)028<0563:FIOTOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., and A. J. van der Westhuysen, 2008: Physics of “saturation-based” dissipation functions proposed for wave forecast models. J. Phys. Oceanogr., 38, 18311841, doi:10.1175/2007JPO3874.1.

    • Search Google Scholar
    • Export Citation
  • Booij, N., R. C. Ris, and L. H. Holthuijsen, 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, doi:10.1029/98JC02622.

    • Search Google Scholar
    • Export Citation
  • Bottema, M., and G. van Vledder, 2008: Effective fetch and non-linear four-wave interactions during wave growth in slanting fetch conditions. Coastal Eng., 55, 261275, doi:10.1016/j.coastaleng.2007.11.001.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., and Coauthors, 2007: Wave modelling—The state of the art. Prog. Oceanogr., 75, 603674, doi:10.1016/j.pocean.2007.05.005.

    • Search Google Scholar
    • Export Citation
  • Contardo, S., and G. Symonds, 2013: Infragravity response to variable wave forcing in the nearshore. J. Geophys. Res. Oceans, 118, 7095–7106, doi:10.1002/2013JC009430.

    • Search Google Scholar
    • Export Citation
  • Department of Transport—Coastal Information Business Unit, 2009: Two Rocks to Cape Naturaliste—LiDAR bathymetric and seabed survey. Fremantle, Western Australia, data set. [Available online at http://catalogue.aodn.org.au/geonetwork.]

  • Dobson, F., W. Perrie, and B. Toulany, 1989: On the deep‐water fetch laws for wind‐generated surface gravity waves. Atmos.–Ocean, 27, 210236, doi:10.1080/07055900.1989.9649334.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., and Y. Yuan, 1994: Wave dissipation by surface processes. Dynamics and Modelling of Ocean Waves, G. J. Komen, Ed., Cambridge University Press, 143–155.

  • Fontaine, E., 2013: A theoretical explanation of the fetch- and duration-limited laws. J. Phys. Oceanogr., 43, 233247, doi:10.1175/JPO-D-11-0190.1.

    • Search Google Scholar
    • Export Citation
  • Hasselmann, K., and Coauthors, 1973: Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z.,A8 (Suppl.), 1–95.

  • Hasselmann, S., K. Hasselmann, J. H. Allender, and T. P. Barnett, 1985: Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum. Part II: Parameterizations of the nonlinear transfer for application in wave models. J. Phys. Oceanogr., 15, 13781391, doi:10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hauser, D., K. Kahma, H. E. Krogstad, S. Lehner, J. A. J. Monbaliu, and L. R. Wyatt, 2005: Measuring and Analysing Directional Spectra of Ocean Waves. EU Publications Office, 465 pp.

  • Holthuijsen, L. H., 2007: Waves in Oceanic and Coastal Waters. Cambridge University Press, 387 pp.

  • Hwang, P. A., and D. W. Wang, 2004: Field measurements of duration-limited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34, 23162326, doi:10.1175/1520-0485(2004)034<2316:FMODGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., H. García-Nava, and F. J. Ocampo-Torres, 2011: Observations of wind wave development in mixed seas and unsteady wind forcing. J. Phys. Oceanogr., 41, 23432362, doi:10.1175/JPO-D-11-044.1.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, doi:10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kahma, K. K., and C. J. Calkoen, 1992: Reconciling discrepancies in the observed growth of wind-generated waves. J. Phys. Oceanogr., 22, 13891405, doi:10.1175/1520-0485(1992)022<1389:RDITOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Komen, G. J., S. Hasselmann, and K. Hasselmann, 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, doi:10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemm, A. J., B. J. Hegge, and G. Masselink, 1999: Offshore wave climate, Perth (Western Australia), 1994–96. Mar. Freshwater Res., 50, 95102, doi:10.1071/MF98081.

    • Search Google Scholar
    • Export Citation
  • Masselink, G., and C. Pattiaratchi, 1998: Morphodynamic impact of sea breeze activity on a beach with beach cusp morphology. J. Coastal Res., 14, 393406.

    • Search Google Scholar
    • Export Citation
  • Masselink, G., and C. Pattiaratchi, 2001: Characteristics of the sea breeze system in Perth, Western Australia, and its effect on the nearshore wave climate. J. Coastal Res., 17, 173187. [Available online at www.jstor.org/stable/4300161.]

    • Search Google Scholar
    • Export Citation
  • Neetu, S., S. Shetye, and P. Chandramohan, 2006: Impact of sea-breeze on wind-seas off Goa, west coast of India. J. Earth Syst. Sci., 115, 229234, doi:10.1007/BF02702036.

    • Search Google Scholar
    • Export Citation
  • Pattiaratchi, C. B., B. Hegge, J. Gould, and I. Elliot, 1997: Impact of sea-breeze activity on nearshore and foreshore processes in southwestern Australia. Cont. Shelf Res., 17, 15391560, doi:10.1016/S0278-4343(97)00016-2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., and Coauthors, 1992: A comprehensive meteorological modeling system—RAMS. Meteor. Atmos. Phys., 49, 6991, doi:10.1007/BF01025401.

    • Search Google Scholar
    • Export Citation
  • Ris, R. C., L. H. Holthuijsen, and N. Booij, 1999: A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res., 104, 76677681, doi:10.1029/1998JC900123.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., and G. P. van Vledder, 2013: Frequency width in predictions of windsea spectra and the role of the nonlinear solver. Ocean Modell., 70, 5271, doi:10.1016/j.ocemod.2012.11.010.

    • Search Google Scholar
    • Export Citation
  • Rogers, W. E., P. A. Hwang, and D. W. Wang, 2003: Investigation of wave growth and decay in the SWAN model: Three regional-scale applications. J. Phys. Oceanogr., 33, 366389, doi:10.1175/1520-0485(2003)033<0366:IOWGAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long, 1981: Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech., 102, 159, doi:10.1017/S0022112081002528.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., M. L. Banner, and J. M. Kaihatu, 2013: The NOPP operational wave model improvement project. Ocean Modell., 70, 210, doi:10.1016/j.ocemod.2012.11.011.

    • Search Google Scholar
    • Export Citation
  • van der Westhuysen, A. J., M. Zijlema, and J. A. Battjes, 2007: Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Eng., 54, 151170, doi:10.1016/j.coastaleng.2006.08.006.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 1999: Wind Generated Ocean Waves. Elsevier Ocean Engineering Book Series, Vol. 2, Elsevier, 288 pp.

  • Young, I. R., and L. A. Verhagen, 1996a: The growth of fetch-limited waves in water of finite-depth. Part 1. Total energy and peak frequency. Coastal Eng., 29, 4778, doi:10.1016/S0378-3839(96)00006-3.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and L. A. Verhagen, 1996b: The growth of fetch-limited waves in water of finite-depth. Part 2. Spectral evolution. Coastal Eng., 29, 7999, doi:10.1016/S0378-3839(96)00007-5.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and L. A. Verhagen, 1996c: The growth of fetch-limited waves in water of finite-depth. Part 3. Directional spectra. Coastal Eng., 29, 101122, doi:10.1016/S0378-3839(96)00026-9.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., and A. van Agthoven, 1997: The response of waves to a sudden change in wind speed. Nonlinear Ocean Waves, W. Perrie, Ed., Advances in Fluid Mechanics Series, Vol. 17, WIT Press, 133–162.

  • Young, I. R., S. Hasselmann, and K. Hasselmann, 1987: Computations of the response of a wave spectrum to a sudden change in the wind direction. J. Phys. Oceanogr., 17, 13171338, doi:10.1175/1520-0485(1987)017<1317:COTROA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 99 3
PDF Downloads 186 74 11