The Effect of Meltwater Plumes on the Melting of a Vertical Glacier Face

Satoshi Kimura British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Satoshi Kimura in
Current site
Google Scholar
PubMed
Close
,
Paul R. Holland British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Paul R. Holland in
Current site
Google Scholar
PubMed
Close
,
Adrian Jenkins British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by Adrian Jenkins in
Current site
Google Scholar
PubMed
Close
, and
Matthew Piggott Department of Earth Science and Engineering, and Grantham Institute for Climate Change, Imperial College London, South Kensington Campus, London, United Kingdom

Search for other papers by Matthew Piggott in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Freshwater produced by the surface melting of ice sheets is commonly discharged into ocean fjords from the bottom of deep fjord-terminating glaciers. The discharge of the freshwater forms upwelling plumes in front of the glacier calving face. This study simulates the meltwater plumes emanated into an unstratified environment using a nonhydrostatic ocean model with an unstructured mesh and subgrid-scale mixing calibrated by comparison to established plume theory. The presence of an ice face reduces the entrainment of seawater into the meltwater plumes, so the plumes remain attached to the ice front, in contrast to previous simple models. Ice melting increases with height above the discharge, also in contrast to some simple models, and the authors speculate that this “overcutting” may contribute to the tendency of icebergs to topple inwards toward the ice face upon calving. The overall melt rate is found to increase with discharge flux only up to a critical value, which depends on the channel size. The melt rate is not a simple function of the subglacial discharge flux, as assumed by many previous studies. For a given discharge flux, the geometry of the plume source also significantly affects the melting, with higher melt rates obtained for a thinner, wider source. In a wider channel, two plumes are emanated near the source and these plumes eventually coalesce. Such merged meltwater plumes ascend faster and increase the maximum melt rate near the center of the channel. The melt rate per unit discharge decreases as the subglacial system becomes more channelized.

Denotes Open Access content.

Corresponding author address: Satoshi Kimura, British Antarctic Survey, High Cross Madingley Road, Cambridge, CB3 0ET, United Kingdom. E-mail: satmur65@bas.ac.uk

Abstract

Freshwater produced by the surface melting of ice sheets is commonly discharged into ocean fjords from the bottom of deep fjord-terminating glaciers. The discharge of the freshwater forms upwelling plumes in front of the glacier calving face. This study simulates the meltwater plumes emanated into an unstratified environment using a nonhydrostatic ocean model with an unstructured mesh and subgrid-scale mixing calibrated by comparison to established plume theory. The presence of an ice face reduces the entrainment of seawater into the meltwater plumes, so the plumes remain attached to the ice front, in contrast to previous simple models. Ice melting increases with height above the discharge, also in contrast to some simple models, and the authors speculate that this “overcutting” may contribute to the tendency of icebergs to topple inwards toward the ice face upon calving. The overall melt rate is found to increase with discharge flux only up to a critical value, which depends on the channel size. The melt rate is not a simple function of the subglacial discharge flux, as assumed by many previous studies. For a given discharge flux, the geometry of the plume source also significantly affects the melting, with higher melt rates obtained for a thinner, wider source. In a wider channel, two plumes are emanated near the source and these plumes eventually coalesce. Such merged meltwater plumes ascend faster and increase the maximum melt rate near the center of the channel. The melt rate per unit discharge decreases as the subglacial system becomes more channelized.

Denotes Open Access content.

Corresponding author address: Satoshi Kimura, British Antarctic Survey, High Cross Madingley Road, Cambridge, CB3 0ET, United Kingdom. E-mail: satmur65@bas.ac.uk
Save
  • Andersen, M. L., and Coauthors, 2010: Spatial and temporal melt variability at Helheim Glacier, east Greenland, and its effect on ice dynamics. J. Geophys. Res.,115, F04041, doi:10.1029/2010JF001760.

  • Apollonio, S., 1973: Glaciers and nutrients in Arctic seas. Science, 180, 491493, doi:10.1126/science.180.4085.491.

  • Arakeri, J. H., D. Deebopam, and J. Srinivasan, 2000: Bifurcation in a buoyant horizontal laminar jet. J. Fluid Mech., 412, 6173, doi:10.1017/S0022112000008181.

    • Search Google Scholar
    • Export Citation
  • Arimitsu, M., J. F. Piatt, E. N. Madison, J. S. Conaway, and N. Hillgruber, 2012: Oceanographic gradients and seabird prey community dynamics in glacial fjords. Fish. Oceanogr., 21, 148169, doi:10.1111/j.1365-2419.2012.00616.x.

    • Search Google Scholar
    • Export Citation
  • Bartholomaus, T. C., R. S. Anderson, and S. Anderson, 2008: Response of glacier basal motion to transient water storage. Nat. Geosci., 1, 3337, doi:10.1038/ngeo.2007.52.

    • Search Google Scholar
    • Export Citation
  • Bartholomew, I., P. Nienow, D. Mair, A. Hubbard, M. A. King, and A. Sole, 2010: Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci., 3, 408411, doi:10.1038/ngeo863.

    • Search Google Scholar
    • Export Citation
  • Chu, V. W., L. C. Smith, A. K. Rennermalm, R. R. Forster, J. E. Box, and N. Reeh, 2009: Sediment plume response to surface melting and supraglacial lake drainages on the Greenland Ice Sheet. J. Glaciol., 55, 10721082, doi:10.3189/002214309790794904.

    • Search Google Scholar
    • Export Citation
  • Cotter, C. J., D. A. Ham, C. C. Pain, and S. Reich, 2009: LBB stability of a mixed Galerkin finite element pair for fluid flow simulations. J. Comput. Phys., 228, 336348, doi:10.1016/j.jcp.2008.09.014.

    • Search Google Scholar
    • Export Citation
  • Cowan, E. A., and R. D. Powell, 1990: Suspended sediment transport and deposition of cyclically interlaminated sediment in a temperate glacial fjord, Alaska, U.S.A. Glacimarine Environments: Processes and Sediments, J. A. Dowdeswell and J. D. Scourse, Eds., Geological Society Special Publ., Vol. 53, Geological Society, 115–155.

  • Dansereau, V., P. Heimbach, and M. Losch, 2014: Simulation of subice shelf melt rates in a general circulation model: Velocity-dependent transfer and the role of friction. J. Geophys. Res. Oceans,119, 1765–1790, doi:10.1002/2013JC008846.

  • Das, S. B., I. Joughin, M. D. Behn, I. M. Howat, M. A. King, D. Lizarralde, and M. P. Bhatia, 2008: Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage. Science, 320, 778781, doi:10.1126/science.1153360.

    • Search Google Scholar
    • Export Citation
  • Dowdeswell, J. A., and M. Cromack, 1991: Behavior of a glacier-derived suspended sediment plume in a small Arctic inlet. J. Geol., 99, 111123, doi:10.1086/629477.

    • Search Google Scholar
    • Export Citation
  • Drewry, D., 1986: Glacial Geologic Processes. Edward Arnold, 276 pp.

  • Ellison, T. H., and J. S. Turner, 1959: Turbulent entrainment in stratified flows. J. Fluid Mech., 6, 423448, doi:10.1017/S0022112059000738.

    • Search Google Scholar
    • Export Citation
  • Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C. Bales, 2009: Higher surface mass balance of the Greenland Ice Sheet revealed by high-resolution climate modeling. Geophys. Res. Lett., 36, L12501, doi:10.1029/2009GL038110.

    • Search Google Scholar
    • Export Citation
  • Fountain, A. G., and J. S. Walder, 1998: Water flow through temperate glaciers. Rev. Geophys., 36, 299328, doi:10.1029/97RG03579.

  • Greisman, P., 1979: On upwelling driven by the melt of ice shelves and tidewater glaciers. Deep-Sea Res., 26A, 10511065, doi:10.1016/0198-0149(79)90047-5.

    • Search Google Scholar
    • Export Citation
  • Hartley, C. H., and M. J. Dunbar, 1938: On the hydrographic mechanism of the so-called brown zones associated with tidal glaciers. J. Mar. Res., 1, 305311.

    • Search Google Scholar
    • Export Citation
  • He, S., Z. Xu, and J. Jackson, 2002: An experimental investigation of buoyancy-opposed wall jet flow. Int. J. Heat Fluid Flow, 23, 487496, doi:10.1016/S0142-727X(01)00152-7.

    • Search Google Scholar
    • Export Citation
  • Hellmer, H., and D. Olbers, 1989: A two-dimensional model for the thermohaline circulation under an ice shelf. Antarct. Sci., 1, 325336, doi:10.1017/S0954102089000490.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 1999: Modeling thermodynamic ice–ocean interactions at the base of an ice shelf. J. Phys. Oceanogr., 29, 17871800, doi:10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., and A. Jenkins, 2001: Adaptation of an isopycnic coordinate ocean model for the study of circulation beneath ice shelves. Mon. Wea. Rev., 129, 19051927, doi:10.1175/1520-0493(2001)129<1905:AOAICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, D. M., R. H. Thomas, B. de Young, M. H. Ribergaard, and B. Lyberth, 2008: Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci., 1, 659664, doi:10.1038/ngeo316.

    • Search Google Scholar
    • Export Citation
  • Holland, P. R., and D. L. Feltham, 2006: The effects of rotation and ice shelf topography on frazil-laden ice shelf water plumes. J. Phys. Oceanogr., 36, 23122327, doi:10.1175/JPO2970.1.

    • Search Google Scholar
    • Export Citation
  • Horne, E. P. W., 1985: Ice-induced vertical circulation in an Arctic fjord. J. Geophys. Res., 90, 10781086, doi:10.1029/JC090iC01p01078.

    • Search Google Scholar
    • Export Citation
  • Howat, I. M., I. Joughin, and T. A. Scambos, 2007: Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 1559–1561, doi:10.1126/science.1138478.

    • Search Google Scholar
    • Export Citation
  • Hunt, G. R., and N. Kaye, 2005: Lazy plumes. J. Fluid Mech., 533, 329338, doi:10.1017/S002211200500457X.

  • Jenkins, A., 1991: A one-dimensional model of ice shelf-ocean interaction. J. Geophys. Res., 96, 20 67120 677, doi:10.1029/91JC01842.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., 2011: Convection-driven melting near the grounding lines of ice shelves and tidewater glaciers. J. Phys. Oceanogr., 41, 22792294, doi:10.1175/JPO-D-11-03.1.

    • Search Google Scholar
    • Export Citation
  • Jenkins, A., H. Hellmer, and D. Holland, 2001: The role of meltwater advection in the formulation of conservative boundary conditions at an ice–ocean interface. J. Phys. Oceanogr., 31, 285296, doi:10.1175/1520-0485(2001)031<0285:TROMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jirka, G. H., and D. R. F. Harleman, 1979: Stability and mixing of a vertical plane buoyant jet in confined depth. J. Fluid Mech., 94, 275304, doi:10.1017/S0022112079001038.

    • Search Google Scholar
    • Export Citation
  • Jordan, J. R., P. R. Holland, A. Jenkins, M. D. Piggott, and S. Kimura, 2014: Modeling ice-ocean interaction in ice-shelf crevasses. J. Geophys. Res. Oceans,119, 995–1008, doi:10.1002/2013JC009208.

  • Joughin, I., W. Abdalati, and M. Fahnestock, 2004: Large fluctuations in speed on Greenland’s Jakobshavn Isbrae glacier. Nature, 432, 608–610, doi:10.1038/nature03130.

    • Search Google Scholar
    • Export Citation
  • Joughin, I., S. B. Das, M. A. King, B. E. Smith, I. M. Howat, and T. Moon, 2008: Seasonal speedup along the western flank of the Greenland Ice Sheet. Science, 320, 781–783, doi:10.1126/science.1153288.

    • Search Google Scholar
    • Export Citation
  • Kader, B., and A. Yaglom, 1972: Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transfer, 15, 23292351, doi:10.1016/0017-9310(72)90131-7.

    • Search Google Scholar
    • Export Citation
  • Kamb, B., 1987: Glacier surge mechanism based on lined cavity configuration of the basal water conduit system. J. Geophys. Res., 92,90839100, doi:10.1029/JB092iB09p09083.

    • Search Google Scholar
    • Export Citation
  • Kaminski, E., S. S. Tait, and G. Carazzo, 2005: Turbulent entrainment in jets with arbitrary buoyancy. J. Fluid Mech., 526, 361376, doi:10.1017/S0022112004003209.

    • Search Google Scholar
    • Export Citation
  • Kaye, N. B., and P. F. Linden, 2004: Coalescing axisymmetric turbulent plumes. J. Fluid Mech., 502, 4163, doi:10.1017/S0022112003007250.

    • Search Google Scholar
    • Export Citation
  • Kimura, S., A. S. Candy, P. R. Holland, M. D. Pigott, and A. Jenkins, 2013: Adaptation of an unstructured-mesh, finite-element ocean model to the simulation of ocean circulation beneath ice shelves. Ocean Modell., 67, 3951, doi:10.1016/j.ocemod.2013.03.004.

    • Search Google Scholar
    • Export Citation
  • Kuang, C., and J. H. Lee, 2001: Effect of downstream control on stability and mixing of a vertical plane buoyant jet in confined depth. J. Hydraul. Res., 39, 375391, doi:10.1080/00221680109499842.

    • Search Google Scholar
    • Export Citation
  • Lane-Serff, G., and T. Moran, 2005: Sedimentation from buoyant jets. J. Hydraul. Eng., 131, 166174, doi:10.1061/(ASCE)0733-9429(2005)131:3(166).

    • Search Google Scholar
    • Export Citation
  • Lane-Serff, G., P. Linden, and M. Hillel, 1993: Forced, angled plumes. J. Hazard. Mater., 33, 7599, doi:10.1016/0304-3894(93)85065-M.

    • Search Google Scholar
    • Export Citation
  • Linden, P. F., 2002: Convection in the environment. Perspectives in Fluid Dynamics, G. K. Batchelor, H. K. Moffatt, and M. G. Worster, Eds., Cambridge University Press, 289–346.

  • List, E. J., 1982: Turbulent jets and plumes. Annu. Rev. Fluid Mech., 14, 189212, doi:10.1146/annurev.fl.14.010182.001201.

  • List, E. J., and J. Imberger, 1973: Turbulent entrainment in buoyant jets and plumes. J. Hydraul. Div., 99, 14611474.

  • Losch, M., 2008: Modeling ice shelf cavities in a z coordinate ocean general circulation model. J. Geophys. Res.,113, C08043, doi:10.1029/2007JC004368.

  • MacAyeal, D. R., 1985: Evolution of tidally triggered meltwater plumes below ice shelves. Oceanology of the Antarctic Continental Shelves, S. Jacobs, Ed., Antarctic Research Series, Vol. 43, Amer. Geophys. Union, 109–132.

  • Matthews, J. B., and A. V. Quinlan, 1975: Seasonal characteristics of water masses in Muir Inlet, a fjord with tidewater glaciers. J. Fish. Res. Board Can., 32, 16931703, doi:10.1139/f75-203.

    • Search Google Scholar
    • Export Citation
  • McDougall, T., D. Jackett, D. Wright, and R. Feistel, 2003: Accurate and computationally efficient algorithms for potential temperature and density of seawater. J. Atmos. Oceanic Technol., 20, 730741, doi:10.1175/1520-0426(2003)20<730:AACEAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morton, B. R., and J. Middleton, 1973: Scale diagrams for forced plumes. J. Fluid Mech., 58, 165176, doi:10.1017/S002211207300220X.

  • Morton, B. R., G. Taylor, and J. S. Turner, 1956: Turbulent gravitational convection from maintained and instantaneous sources. Proc. Roy. Soc. London, 234A, 123, doi:10.1098/rspa.1956.0011.

    • Search Google Scholar
    • Export Citation
  • Motyka, R. J., L. Hunter, K. A. Echelmeyer, and C. Connor, 2003: Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, U.S.A. Ann. Glaciol., 36, 5765, doi:10.3189/172756403781816374.

    • Search Google Scholar
    • Export Citation
  • Motyka, R. J., M. Truffer, M. Fahnestock, J. Mortensen, S. Rysgaard, and I. Howat, 2011: Submarine melting of the 1985 Jakobshavn Isbrae floating tongue and the triggering of the current retreat. J. Geophys. Res.,116, F01007, doi:10.1029/2009JF001632.

  • Mugford, R. I., and J. A. Dowdeswell, 2011: Modeling glacial meltwater plume dynamics and sedimentation in high-latitude fjords. J. Geophys. Res., 116, F01023, doi:10.1029/2010JF001735.

    • Search Google Scholar
    • Export Citation
  • Mulder, T., and J. Syvitski, 1995: Turbidity currents generated at river mouths during exceptional discharges to the world oceans. J. Geol., 103, 285299, doi:10.1086/629747.

    • Search Google Scholar
    • Export Citation
  • Nye, J., 1976: Water flow in glaciers: Jökulhlaups, tunnels, and veins. J. Glaciol., 17, 181207.

  • Pera, L., and B. Gebhart, 1975: Laminar plume interactions. J. Fluid Mech., 68, 259271, doi:10.1017/S0022112075000791.

  • Piggott, M. D., G. J. Gorman, C. C. Pain, P. A. Allison, A. S. Candy, B. T. Martin, and M. R. Wells, 2008: A new computational framework for multi-scale ocean modelling based on adapting unstructured meshes. Int. J. Numer. Methods Fluids, 56, 10031015, doi:10.1002/fld.1663.

    • Search Google Scholar
    • Export Citation
  • Powell, R. D., 1990: Glacimarine processes at grounding-line fans and their growth to ice-contact deltas. Geol. Soc. London Spec. Publ.,53, 53–73, doi:10.1144/GSL.SP.1990.053.01.03.

  • Prandtl, L., 1925: Bericht über Untersuchungen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech., 5, 136139.

  • Priestley, C. H. B., and F. K. Ball, 1955: Continuous convection from an isolated source of heat. Quart. J. Roy. Meteor. Soc., 81, 144157, doi:10.1002/qj.49708134803.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science,311, 986–990, doi:10.1126/science.1121381.

  • Röthlisberger, H., 1972: Water pressure in intra- and subglacial channels. J. Glaciol., 11, 177203.

  • Salcedo-Castro, J., D. Bourgault, and B. deYoung, 2011: Circulation induced by subglacial discharge in glacial fjords: Results from idealized numerical simulations. Cont. Shelf Res., 31, 13961406, doi:10.1016/j.csr.2011.06.002.

    • Search Google Scholar
    • Export Citation
  • Salcedo-Castro, J., D. Bourgault, S. J. Bentley, and B. deYoung, 2013: Non-hydrostatic modeling of cohesive sediment transport associated with a subglacial buoyant jet in glacial fjords: A process-oriented approach. Ocean Modell., 63, 3039, doi:10.1016/j.ocemod.2012.12.005.

    • Search Google Scholar
    • Export Citation
  • Sciascia, R., F. Straneo, C. Cenedese, and P. Heimbach, 2013: Seasonal variability of submarine melt rate and circulation in an east Greenland fjord. J. Geophys. Res. Oceans,118, 2492–2506, doi:10.1002/jgrc.20142.

  • Shepherd, A., and Coauthors, 2012: A reconciled estimate of ice-sheet mass balance. Science, 338, 11831189, doi:10.1126/science.1228102.

    • Search Google Scholar
    • Export Citation
  • Sobey, R., A. Johnston, and R. Keane, 1988: Horizontal round buoyant jet in shallow water. J. Hydraul. Eng., 114, 910929, doi:10.1061/(ASCE)0733-9429(1988)114:8(910).

    • Search Google Scholar
    • Export Citation
  • Stearns, L. A., and G. S. Hamilton, 2007: Rapid volume loss from two east Greenland outlet glaciers quantified using repeat stereo satellite imagery. Geophys. Res. Lett., 34, L05503, doi:10.1029/2006GL028982.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., and Coauthors, 2012: Characteristics of ocean waters reaching Greenland’s glaciers. Ann. Glaciol., 53 (60), 202210, doi:10.3189/2012AoG60A059.

    • Search Google Scholar
    • Export Citation
  • Svendsen, H., and Coauthors, 2002: The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Res., 21, 133166, doi:10.1111/j.1751-8369.2002.tb00072.x.

    • Search Google Scholar
    • Export Citation
  • Syvitski, J. P. M., 1989: On the deposition of sediment within glacier-influenced fjords: Oceanographic controls. Mar. Geol., 85, 301329, doi:10.1016/0025-3227(89)90158-8.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1915: Eddy motion in the atmosphere. Philos. Trans. Roy. Soc. London, A215, 126, doi:10.1098/rsta.1915.0001.

  • Turner, J. S., 1986: Turbulent entrainment: The development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech., 173, 431471, doi:10.1017/S0022112086001222.

    • Search Google Scholar
    • Export Citation
  • Velicogna, I., 2009: Increasing rates of ice mass loss from the Greenland and Antarctic Ice Sheets revealed by GRACE. Geophys. Res. Lett.,36, L19503, doi:10.1029/2009GL040222.

  • Walters, R. A., E. G. Josberger, and C. L. Driedger, 1988: Columbia Bay, Alaska: An ‘upside down’ estuary. Estuarine Coastal Shelf Sci., 26, 607617, doi:10.1016/0272-7714(88)90037-6.

    • Search Google Scholar
    • Export Citation
  • Weertman, J., 1972: General theory of water flow at the base of a glacier or ice sheet. Rev. Geophys., 10, 287333, doi:10.1029/RG010i001p00287.

    • Search Google Scholar
    • Export Citation
  • Wille, R., and H. Fernholz, 1965: Report on the first European Mechanics Colloquium, on the Coanda effect. J. Fluid Mech., 23, 801819, doi:10.1017/S0022112065001702.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, D. Menemenlis, and M. Koppes, 2012: Numerical experiments on subaqueous melting of Greenland tidewater glaciers in response to ocean warming and enhanced subglacial discharge. Ann. Glaciol., 53, 229234, doi:10.3189/2012AoG60A139.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., E. Rignot, I. Fenty, D. Menemenlis, and M. Mar Flexas, 2013: Subaqueous melting of Store Glacier, west Greenland from three-dimensional, high-resolution numerical modeling and ocean observations. Geophys. Res. Lett., 40, 4648–4653, doi:10.1002/grl.50825.

    • Search Google Scholar
    • Export Citation
  • Young, T., 1800: Outlines of experiments and inquiries respecting sound and light. By Thomas Young, M. D. F. R. S. In a letter to Edward Whitaker Gray, M. D. Sec. R. S. Philos. Trans. Roy. Soc. London, 90, 106150, doi:10.1098/rstl.1800.0008.

    • Search Google Scholar
    • Export Citation
  • Zukoski, E., T. Kubota, and B. Cetegen, 1981: Entrainment in fire plumes. Fire Saf. J., 3, 107121, doi:10.1016/0379-7112(81)90037-0.

  • Zwally, H. J., W. Abdalati, T. Herring, K. Larson, J. Saba, and K. Steffen, 2002: Surface melt-induced acceleration of Greenland Ice-Sheet flow. Science, 297, 218222, doi:10.1126/science.1072708.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1023 267 140
PDF Downloads 599 117 22