Some Dynamical Constraints on Upstream Pathways of the Denmark Strait Overflow

Jiayan Yang Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Jiayan Yang in
Current site
Google Scholar
PubMed
Close
and
Lawrence J. Pratt Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Search for other papers by Lawrence J. Pratt in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.

Corresponding author address: Jiayan Yang, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. E-mail: jyang@whoi.edu

Abstract

The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.

Corresponding author address: Jiayan Yang, Department of Physical Oceanography, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA 02543. E-mail: jyang@whoi.edu
Save
  • Aagaard, K., E. Fahrbach, J. Meincke, and J. H. Swift, 1991: Saline outflow from the Arctic Ocean: Its contribution to the deep waters of the Greenland, Norwegian, and Icelandic seas. J. Geophys. Res., 96, 20 43320 441, doi:10.1029/91JC02013.

    • Search Google Scholar
    • Export Citation
  • Biastoch, A., R. H. Käse, and D. B. Stammer, 2003: The sensitivity of the Greenland–Scotland Ridge overflow to forcing changes. J. Phys. Oceanogr., 33, 23072319, doi:10.1175/1520-0485(2003)033<2307:TSOTGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böning, C. W., F. O. Bryan, W. R. Holland, and R. Doescher, 1996: Deep-water formation and meridional overturning in a high-resolution model of the North Atlantic. J. Phys. Oceanogr., 26, 11421164, doi:10.1175/1520-0485(1996)026<1142:DWFAMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buch, E., S.-A. Malmberg, and S. S. Kristmannsson, 1996: Arctic Ocean deep water masses in the western Iceland Sea. J. Geophys. Res., 101, 11 96511 973, doi:10.1029/95JC03869.

    • Search Google Scholar
    • Export Citation
  • Cenedese, C., 2012: Downwelling in basins subject to buoyancy loss. J. Phys. Oceanogr., 42, 18171833, doi:10.1175/JPO-D-11-0114.1.

  • Dickson, R., and Coauthors, 2008: The overflow flux west of Iceland: Variability, origins and forcing. Arctic–Subarctic Ocean Flux, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 443–474, doi:10.1007/978-1-4020-6774-7_20.

  • Eldevik, T., J. E. Ø. Nilsen, D. Iovino, K. A. Olsson, A. B. Sandø, and H. Drange, 2009: Observed sources and variability of Nordic Seas overflow. Nat. Geosci., 2, 406410, doi:10.1038/ngeo518.

    • Search Google Scholar
    • Export Citation
  • Hansen, B., S. Østerhus, W. R. Turrell, S. Jónsson, H. Valdimarsson, H. Hátún, and S. M. Olsen, 2008: The inflow of Atlantic water, heat and salt to the Nordic Seas across the Greenland–Scotland Ridge. Arctic–Subarctic Ocean Flux, R. R. Dickson, J. Meincke, and P. Rhines, Eds., Springer, 15–43.

  • Helfrich, K. R., and L. J. Pratt, 2003: Rotating hydraulics and the upstream basin circulation. J. Phys. Oceanogr., 33, 16511663, doi:10.1175/2383.1.

    • Search Google Scholar
    • Export Citation
  • Isachsen, P. E., C. Mauritzen, and H. Svendsen, 2007: Dense water formation in the Nordic Seas diagnosed from sea surface buoyancy fluxes. Deep-Sea Res., 54, 2241, doi:10.1016/j.dsr.2006.09.008.

    • Search Google Scholar
    • Export Citation
  • Jeansson, E., S. Jutterström, B. Rudels, L. G. Anderson, K. A. Olsson, E. P. Jones, W. M. Smethie Jr., and J. H. Swift, 2008: Sources to the East Greenland Current and its contribution to the Denmark Strait overflow. Prog. Oceanogr., 78, 1228, doi:10.1016/j.pocean.2007.08.031.

    • Search Google Scholar
    • Export Citation
  • Jónsson, S., 1999: The circulation in the northern part of the Denmark Strait and variability. ICES CM 9, 9 pp.

  • Jónsson, S., and H. Valdimarsson, 2004: A new path for the Denmark Strait Overflow Water from the Iceland Sea to Denmark Strait. Geophys. Res. Lett., 31, L03305, doi:10.1029/2003GL019214.

    • Search Google Scholar
    • Export Citation
  • Karcher, M., F. Kauker, R. Gerdes, E. Hunke, and J. Zhang, 2007: On the dynamics of Atlantic Water circulation in the Arctic Ocean. J. Geophys. Res., 112, C04S02, doi:10.1029/2006JC003630.

    • Search Google Scholar
    • Export Citation
  • Käse, R. H., and A. Oschlies, 2000: Flow through Denmark Strait. J. Geophys. Res.,105, 28 527–28 546, doi:10.1029/2000JC900111.

  • Käse, R. H., J. B. Girton, and T. B. Sanford, 2003: Structure and variability of the Denmark Strait overflow: Model and observations. J. Geophys. Res., 108, 3181, doi:10.1029/2002JC001548.

    • Search Google Scholar
    • Export Citation
  • Käse, R. H., N. Serra, A. Köhl, and D. Stammer, 2009: Mechanisms for the variability of dense water pathways in the Nordic Seas. J. Geophys. Res., 114, C01013, doi:10.1029/2008JC004916.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., 2010: Variable source regions of Denmark Strait and Faroe Bank Channel. Tellus, 62A, 551568, doi:10.1111/j.1600-0870.2010.00454.x.

    • Search Google Scholar
    • Export Citation
  • Köhl, A., R. H. Käse, D. Stammer, and N. Serra, 2007: Causes of changes in the Denmark Strait overflow. J. Phys. Oceanogr., 37, 16781696, doi:10.1175/JPO3080.1.

    • Search Google Scholar
    • Export Citation
  • Macrander, A., U. Send, H. Valdimarsson, S. Jónsson, and R. H. Käse, 2005: Interannual changes in the overflow from the Nordic Seas into the Atlantic Ocean through Denmark Strait. Geophys. Res. Lett., 32, L06606, doi:10.1029/2004GL021463.

    • Search Google Scholar
    • Export Citation
  • Macrander, A., R. H. Käse, U. Send, H. Valdimarsson, and S. Jonsson, 2007: Spatial and temporal structure of the Denmark Strait overflow by acoustic observations. Ocean Dyn., 57, 7589, doi:10.1007/s10236-007-0101-x.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., and J. R. Scott, 1999: Convective mixing and the thermohaline circulation. J. Phys. Oceanogr., 29, 29622970, doi:10.1175/1520-0485(1999)029<2962:CMATTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996a: Production of dense overflow waters feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a revised circulation scheme. Deep-Sea Res. I, 43, 769806, doi:10.1016/0967-0637(96)00037-4.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., 1996b: Production of dense overflow waters feeding the North Atlantic across the Greenland Sea-Scotland Ridge. Part 2: An inverse model. Deep-Sea Res., 43, 807835, doi:10.1016/0967-0637(96)00038-6.

    • Search Google Scholar
    • Export Citation
  • Nilsen, J. E. Ø., Y. Gao, H. Drange, T. Furevik, and M. Bentsen, 2003: Simulated North Atlantic-Nordic Seas water mass exchanges in an isopycnic coordinate OGCM. Geophys. Res. Lett., 30, 1536, doi:10.1029/2002GL016597.

    • Search Google Scholar
    • Export Citation
  • Pedlosky, J., 2003: Thermally driven circulation in small ocean basins. J. Phys. Oceanogr., 33, 23332340, doi:10.1175/1520-0485(2003)033<2333:TDCISO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., 1997: Hydraulically drained flows in rotating basins. Part II: Steady flow. J. Phys. Oceanogr., 27, 25222535, doi:10.1175/1520-0485(1997)027<2522:HDFIRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and M. Spall, 2008: Circulation and exchange in choked marginal seas. J. Phys. Oceanogr., 38, 26392661, doi:10.1175/2008JPO3946.1.

    • Search Google Scholar
    • Export Citation
  • Pratt, L. J., and J. Whitehead, 2008: Rotating Hydraulics. Springer, 582 pp.

  • Price, J. F., and M. O. Baringer, 1994: Outflows and deep water production by marginal seas. Prog. Oceanogr., 33, 161200, doi:10.1016/0079-6611(94)90027-2.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., E. Fahrbach, E. Meincke, G. Budeus, and P. Eriksson, 2002: The East Greenland Current and its contribution to the Denmark Strait overflow. ICES J. Mar. Sci., 59, 11331154, doi:10.1006/jmsc.2002.1284.

    • Search Google Scholar
    • Export Citation
  • Rudels, B., P. Eriksson, E. Buch, G. Budéus, E. Fahrbach, S.-A. Malmberg, J. Meincke, and P. Mälkki, 2003: Temporal switching between sources of the Denmark Strait Overflow Water. ICES Mar. Sci. Symp., 219, 319325.

    • Search Google Scholar
    • Export Citation
  • Serra, N., R. H. Käse, A. Kohl, D. Stammer, and D. Quadfadsel, 2010: On the low-frequency phase relation between the Denmark Strait and the Faroe-Bank Channel overflows. Tellus, 62A, 530550, doi:10.1111/j.1600-0870.2010.00445.x.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., and J. H. Swift, 1989: The tritium:krypton-85 age of Denmark Strait Overflow Water and the Gibbs Fracture Zone Water just south of Denmark Strait. J. Geophys. Res., 94, 82658275, doi:10.1029/JC094iC06p08265.

    • Search Google Scholar
    • Export Citation
  • Søiland, H., M. D. Prater, and T. Rossby, 2008: Rigid topographic control of currents in the Nordic Seas. Geophys. Res. Lett., 35, L18607, doi:10.1029/2008GL034846.

    • Search Google Scholar
    • Export Citation
  • Spall, M., 2003: On the thermohaline circulation in flat-bottom marginal seas. J. Mar. Res., 61, 125, doi:10.1357/002224003321586390.

    • Search Google Scholar
    • Export Citation
  • Spall, M., 2004: Boundary currents and watermass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, doi:10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spall, M., 2010: Non-local topographic influences on deep convection: An idealized model for the Nordic Seas. Ocean Modell., 32, 7285, doi:10.1016/j.ocemod.2009.10.009.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: On the connection between dense water formation, overturning, and poleward heat transport in a convective basin. J. Phys. Oceanogr., 36, 606628, doi:10.1175/JPO2875.1.

    • Search Google Scholar
    • Export Citation
  • Swift, J. H., K. Aagaard, and S. Malmberg, 1980: The contribution of Denmark Strait overflow to the deep North Atlantic. Deep-Sea Res., 27, 2942, doi:10.1016/0198-0149(80)90070-9.

    • Search Google Scholar
    • Export Citation
  • Tanhua, T., K. A. Olsson, and E. Jeansson, 2005: Formation of Denmark Strait Overflow Water and its hydro-chemical composition. J. Mar. Syst., 57, 264288, doi:10.1016/j.jmarsys.2005.05.003.

    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, H. Valdimarsson, S. Jonsson, D. J. Torres, S. Osterhus, and T. Eldevik, 2011: Significant role of the north Icelandic jet in the formation of Denmark Strait Overflow Water. Nat. Geosci., 4, 723727, doi:10.1038/ngeo1234.

    • Search Google Scholar
    • Export Citation
  • Våge, K., R. S. Pickart, M. A. Spall, G. W. K. Moore, H. Valdimarsson, D. J. Torres, S. Y. Erofeeva, and J. E. Nilsen, 2013: Revised circulation scheme north of the Denmark Strait. Deep-Sea Res., 79, 2039, doi:10.1016/j.dsr.2013.05.007.

    • Search Google Scholar
    • Export Citation
  • Wilkenskjeld, S., and D. Quadfasel, 2005: Response of the Greenland‐Scotland overflow to changing deep water supply from the Arctic Mediterranean. Geophys. Res. Lett.,32, L21607, doi:10.1029/2005GL024140.

  • Yang, J., 2005: The Arctic and subarctic ocean flux of potential vorticity and the Arctic Ocean circulation. J. Phys. Oceanogr., 35, 23872407, doi:10.1175/JPO2819.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and J. F. Price, 2000: Water mass formation and potential vorticity balance in an abyssal ocean circulation model. J. Mar. Res., 58, 789808, doi:10.1357/002224000321358918.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and J. F. Price, 2007: Potential vorticity constraint on the flow between two basins. J. Phys. Oceanogr., 37, 22512266, doi:10.1175/JPO3116.1.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and L. Pratt, 2013: On the effective capacity of the dense-water reservoir for the Nordic Seas overflow: Some effects of topography and wind stress. J. Phys. Oceanogr., 43, 418431, doi:10.1175/JPO-D-12-087.1.

    • Search Google Scholar
    • Export Citation
  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution OAFlux Project Tech. Rep. OA-2008-01, 64 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 289 62 6
PDF Downloads 192 50 3