The Red Sea: A Natural Laboratory for Wind and Wave Modeling

Sabique Langodan King Abdullah University of Science and Technology, Physical Science and Engineering Division, Thuwal, Saudi Arabia

Search for other papers by Sabique Langodan in
Current site
Google Scholar
PubMed
Close
,
Luigi Cavaleri Institute of Marine Sciences, Venice, Italy

Search for other papers by Luigi Cavaleri in
Current site
Google Scholar
PubMed
Close
,
Yesubabu Viswanadhapalli King Abdullah University of Science and Technology, Physical Science and Engineering Division, Thuwal, Saudi Arabia

Search for other papers by Yesubabu Viswanadhapalli in
Current site
Google Scholar
PubMed
Close
, and
Ibrahim Hoteit King Abdullah University of Science and Technology, Physical Science and Engineering Division, Thuwal, Saudi Arabia

Search for other papers by Ibrahim Hoteit in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Red Sea is a narrow, elongated basin that is more than 2000 km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen’s and also Ardhuin’s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

Corresponding author address: Ibrahim Hoteit, 4700 King Abdullah University of Science and Technology, Physical Science and Engineering Division, Mail box 1184, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa

Abstract

The Red Sea is a narrow, elongated basin that is more than 2000 km long. This deceivingly simple structure offers very interesting challenges for wind and wave modeling, not easily, if ever, found elsewhere. Using standard meteorological products and local wind and wave models, this study explores how well the general and unusual wind and wave patterns of the Red Sea could be reproduced. The authors obtain the best results using two rather opposite approaches: the high-resolution Weather Research Forecasting (WRF) local model and the slightly enhanced surface winds from the global European Centre for Medium-Range Weather Forecasts model. The reasons why these two approaches produce the best results and the implications on wave modeling in the Red Sea are discussed. The unusual wind and wave patterns in the Red Sea suggest that the currently available wave model source functions may not properly represent the evolution of local fields. However, within limits, the WAVEWATCH III wave model, based on Janssen’s and also Ardhuin’s wave model physics, provides very reasonable results in many cases. The authors also discuss these findings and outline related future work.

Corresponding author address: Ibrahim Hoteit, 4700 King Abdullah University of Science and Technology, Physical Science and Engineering Division, Mail box 1184, Thuwal 23955-6900, Saudi Arabia. E-mail: ibrahim.hoteit@kaust.edu.sa
Save
  • Allender, J. H., and Coauthors, 1985: Sea Wave Modelling Project (SWAMP), An intercomparison study of wind wave prediction models. Part 1: Principal results and conclusions. Ocean Wave Modeling, Plenum, 256 pp.

  • Ardhuin, F., and Coauthors, 2010: Semiempirical dissipation source functions for ocean waves. Part I: Definition, calibration and validation. J. Phys. Oceanogr., 40, 19171941, doi:10.1175/2010JPO4324.1.

    • Search Google Scholar
    • Export Citation
  • Babanin, A., 2011: Breaking and Dissipation of Ocean Surface Waves. Cambridge University Press, 463 pp.

  • Bentamy, A., D. C. Fillon, and C. Perigaud, 2008: Characterization of ASCAT measurements based on buoy and QuikSCAT wind vector observations. Ocean Sci., 4, 265274, doi:10.5194/os-4-265-2008.

    • Search Google Scholar
    • Export Citation
  • Bertotti, L., P. Canestrelli, L. Cavaleri, F. Pastore, and L. Zampato, 2011: The Henetus wave forecast system in the Adriatic Sea. Nat. Hazards Earth Syst. Sci., 11, 29652979, doi:10.5194/nhess-11-2965-2011.

    • Search Google Scholar
    • Export Citation
  • Bertotti, L., L. Cavaleri, L. Loffredo, and L. Torrisi, 2013: Nettuno: Analysis of a wind and wave forecast system for the Mediterranean Sea. Mon. Wea. Rev.,141, 3130–3141, doi:10.1175/MWR-D-12-00361.1.

  • Bertotti, L., L. Cavaleri, A. Soret, and R. Tolosana-Delgado, 2014: Performance of global and regional nested meteorological models. Cont. Shelf Sci.,87, 17–27, doi:10.1016/j.csr.2013.12.013.

  • Bidlot, J.-R., P. Janssen, and S. Abdalla, 2007: A revised formulation of ocean wave dissipation and its model impact. ECMWF Tech. Memo. 509, 27 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/501-600/tm509.pdf.]

  • Bromwich, D., Y. H. Kuo, M. Serreze, J. Walsh, L. S. Bai, M. Barlage, K. Hines, and A. Slater, 2010: Arctic System Reanalysis: Call for community involvement. Eos, Trans. Amer. Geophys. Union, 91, 1314, doi:10.1029/2010EO020001.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., and L. Bertotti, 1997: In search of the correct wind and wave fields in a minor basin. Mon. Wea. Rev., 125, 19641975, doi:10.1175/1520-0493(1997)125<1964:ISOTCW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cavaleri, L., and L. Bertotti, 2004: Accuracy of the modelled wind and wave fields in enclosed seas. Tellus, 56A, 167175, doi:10.1111/j.1600-0870.2004.00042.x.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Encyclopedia Britannica, 2008: Red Sea. Encyclopedia Britannica. [Available online at http://www.britannica.com/EBchecked/topic/494479/Red-Sea.]

  • Garcia-Nava, H., F. J. Ocampo-Torres, P. Osuna, and M. A. Donelan, 2009: Wind stress in the presence of swell under moderate to strong wind conditions. J. Geophys. Res.,14, C12008, doi:10.1029/2009JC005389.

  • Gemmill, W., B. Katz, and X. Li, 2007: Daily real-time global sea surface temperature—High-resolution analysis: RTG_SST_HR. NOAA/NWS/NCEP/MMAB Office Note 260, 39 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn260/MMAB260.pdf.]

  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 1991: Quasi-linear theory of wind wave generation applied to wave forecasting. J. Phys. Oceanogr., 21, 16311642, doi:10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janssen, P. A. E. M., 2008: Progress in ocean wave forecasting. J. Comput. Phys., 227, 35723594, doi:10.1016/j.jcp.2007.04.029.

  • Jiang, H., J. T. Farrar, R. C. Beardsley, R. Chen, and C. Chen, 2009: Zonal surface wind jets across the Red Sea due to mountain gap forcing along both sides of the Red Sea. Geophys. Res. Lett., 36, L19605, doi:10.1029/2009GL040008.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Lo, J. C. F., Z. L. Yang, and R. A. Pielke Sr., 2008: Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res., 113, D09112, doi:10.1029/2007JD009216.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morcos, S. A., 1970: Physical and chemical oceanography of the Red Sea. Oceanogr. Mar. Biol. Rev., 8, 73202.

  • Pielke, R. A., Sr., 2002: Mesoscale Meteorological Modeling. 2nd ed. Academic Press, 676 pp.

  • Ponce de Leon, S., and C. Guedes Soares, 2008: Sensitivity of wave model predictions to wind fields in the western Mediterranean Sea. Coastal Eng., 55, 920929, doi:10.1016/j.coastaleng.2008.02.023.

    • Search Google Scholar
    • Export Citation
  • Ralston, D. K., H. Jiang, and T. F. Ferrar, 2013: Waves in Red Sea: Response to monsoonal and mountain gap winds. Cont. Shelf Res., 65, 113, doi:10.1016/j.csr.2013.05.017.

    • Search Google Scholar
    • Export Citation
  • Richardson, D. S., J. Bidlot, L. Ferranti, T. Haiden, T. Hewson, M. Janousek, F. Prates, and F. Vitart, 2013: Evaluation of ECMWF forecasts, including 2012–2013 upgrades. ECMWF Tech. Memo. 710, 55 pp. [Available online at http://old.ecmwf.int/publications/library/ecpublications/_pdf/tm/701-800/tm710.pdf.]

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Steele, C. J., S. R. Dorling, R. von Glasow, and J. Bacon, 2012: Idealized WRF model sensitivity simulations of sea breeze types and their effects on offshore wind fields. Atmos. Chem. Phys. Discuss., 12, 15 83715 881, doi:10.5194/acpd-12-15837-2012.

    • Search Google Scholar
    • Export Citation
  • Steele, K. E., C. C. Teng, and D. W. C. Wang, 1992: Wave direction measurements using pitch and roll buoys. Ocean Eng., 19, 349375, doi:10.1016/0029-8018(92)90035-3.

    • Search Google Scholar
    • Export Citation
  • Tolman, H. L., 1999: User manual and system documentation of WAVEWATCH-III version 1.18. NOAA/NWS/NCEP/OMB Tech. Note 106, 110 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn166/OMB_166.pdf.]

  • Tolman, H. L., 2002: Validation of WAVEWATCH III version 1.15 for a global domain. NOAA/NWS/NCEP/OMB Tech. Note 213, 33 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn222/MMAB_222.pdf.]

  • Tolman, H. L., 2008: User manual and system documentation of WAVEWATCH III version 3.14. NOAA/NWS/NCEP/MMAB Tech. Note 276, 220 pp. [Available online at http://polar.ncep.noaa.gov/mmab/papers/tn276/MMAB_276.pdf.]

  • Tolman, H. L., and D. V. Chalikov, 1996: Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 24972518, doi:10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Verhoef, A., and A. Stoffelen, 2013: Validation of ASCAT 12.5-km winds. Tech. Note SAF/OSI/CDOP/KNMI/TEC/RP/147, 11 pp. [Available online at http://www.knmi.nl/publications/fulltexts/validation_of_ascat_12.5km_winds_1.3.pdf.]

  • Vogelzang, J., A. Stoffelen, A. Verhoef, and J. Figa-Saldana, 2011: On the quality of high-resolution scatterometer winds. J. Geophys. Res., 116, C10033, doi:10.1029/2010JC006640.

    • Search Google Scholar
    • Export Citation
  • Waltham, T., 2005: Extension tectonics in the AFAR triangle. Geol. Today, 21, 101107, doi:10.1111/j.1365-2451.2005.00510.x.

  • Yao, F., I. Hoteit, L. J. Pratt, A. S. Bower, P. Zhai, A. Köhl, and G. Gopalakrishnan, 2014a: Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J. Geophys. Res. Oceans, 119, 2238–2262, doi:10.1002/2013JC009004.

    • Search Google Scholar
    • Export Citation
  • Yao, F., I. Hoteit, L. J. Pratt, A. S. Bower, A. Köhl, G. Gopalakrishnan, and D. Rivas, 2014b: Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J. Geophys. Res. Oceans, 119, 2263–2289, doi:10.1002/2013JC009331.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1477 410 55
PDF Downloads 1227 317 63