The Impact of Subtidal Circulation on Internal-Tide-Induced Mixing in the Philippine Sea

Colette G. Kerry University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Colette G. Kerry in
Current site
Google Scholar
PubMed
Close
,
Brian S. Powell University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Brian S. Powell in
Current site
Google Scholar
PubMed
Close
, and
Glenn S. Carter University of Hawai‘i at Mānoa, Honolulu, Hawaii

Search for other papers by Glenn S. Carter in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses a primitive equation model to estimate the time-varying M2 internal tide dissipation in the Philippine Sea in the presence of the subtidal circulation. The time-mean diapycnal diffusivity due to the M2 internal tide is estimated to be 4.0–4.8 × 10−4 m2 s−1 at the Luzon Strait and 2–9 × 10−5 m2 s−1 in the Philippine Sea basin. The variability in internal tides and their interactions with the subtidal ocean circulation results in significant spatial and temporal variability in the energy available for mixing. The subtidal circulation influences internal-tide-induced mixing in two ways: by introducing variability in internal tide generation and by increased dissipation of baroclinic energy associated with greater velocity shear. Close to the generation site, mixing is dominated by high-mode internal tide dissipation, while in the far field the influence of the mesoscale energy on internal tide dissipation is significant, resulting in increased dissipation. This study presents model-based estimates of the important and relatively unknown effect of mesoscale circulation on internal-tide-induced mixing away from internal tide generation sites in a region of high eddy kinetic energy.

Corresponding author address: Colette Kerry, University of Hawai‘i at Mānoa, 1000 Pope Rd., Honolulu, HI 96822. E-mail: ckerry@hawaii.edu

Abstract

This study uses a primitive equation model to estimate the time-varying M2 internal tide dissipation in the Philippine Sea in the presence of the subtidal circulation. The time-mean diapycnal diffusivity due to the M2 internal tide is estimated to be 4.0–4.8 × 10−4 m2 s−1 at the Luzon Strait and 2–9 × 10−5 m2 s−1 in the Philippine Sea basin. The variability in internal tides and their interactions with the subtidal ocean circulation results in significant spatial and temporal variability in the energy available for mixing. The subtidal circulation influences internal-tide-induced mixing in two ways: by introducing variability in internal tide generation and by increased dissipation of baroclinic energy associated with greater velocity shear. Close to the generation site, mixing is dominated by high-mode internal tide dissipation, while in the far field the influence of the mesoscale energy on internal tide dissipation is significant, resulting in increased dissipation. This study presents model-based estimates of the important and relatively unknown effect of mesoscale circulation on internal-tide-induced mixing away from internal tide generation sites in a region of high eddy kinetic energy.

Corresponding author address: Colette Kerry, University of Hawai‘i at Mānoa, 1000 Pope Rd., Honolulu, HI 96822. E-mail: ckerry@hawaii.edu
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature, 423, 159163, doi:10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and Coauthors, 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Buhler, O., and M. McIntyre, 2005: Wave capture and wave–vortex duality. J. Fluid Mech., 534, 6795, doi:10.1017/S0022112005004374.

  • Buijsman, M. C., and S. Legg, 2012: Double ridge internal tide interference and its effect on dissipation in Luzon Strait. J. Phys. Oceanogr., 42, 13371356, doi:10.1175/JPO-D-11-0210.1.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and Coauthors, 2008: Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223, doi:10.1175/2008JPO3860.1.

    • Search Google Scholar
    • Export Citation
  • Di Lorenzo, E., W. R. Young, and S. L. Smith, 2006: Numerical and analytical estimates of M2 tidal conversion at steep oceanic ridges. J. Phys. Oceanogr., 36, 10721084, doi:10.1175/JPO2880.1.

    • Search Google Scholar
    • Export Citation
  • Dunphy, M., and K. G. Lamb, 2014: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction. J. Geophys. Res., 119, 523536, doi:10.1002/2013JC009293.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Glazman, R., 1996: Spectra of baroclinic inertia-gravity wave turbulence. J. Phys. Oceanogr., 26, 12561265, doi:10.1175/1520-0485(1996)026<1256:SOBIGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94, 96869698, doi:10.1029/JC094iC07p09686.

  • Jan, S., R.-C. Lien, and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, doi:10.1007/s10872-008-0066-5.

    • Search Google Scholar
    • Export Citation
  • Janekovic, I., and B. Powell, 2012: Analysis of imposing tidal dynamics to nested numerical models. Cont. Shelf Res., 34, 3040, doi:10.1016/j.csr.2011.11.017.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Jia, F., L. Wu, and B. Qiu, 2011: Seasonal modulation of eddy kinetic energy and its formation mechanism in the southeast Indian Ocean. J. Phys. Oceanogr., 41, 657665, doi:10.1175/2010JPO4436.1.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., M. Merrifield, and P. Holloway, 2003: Internal tide scattering at the Line Islands Ridge. J. Geophys. Res.,108, 3365, doi:10.1029/2003JC001844.

  • Johnston, T. M. S., D. L. Rudnick, G. S. Carter, R. E. Todd, and S. T. Cole, 2011: Internal tidal beams and mixing near Monterey Bay. J. Geophys. Res., 116, C03017, doi:10.1029/2010JC006592.

    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2013: Effects of remote generation sites on model estimates of M2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43, 187204, doi:10.1175/JPO-D-12-081.1.

    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2014: The impact of subtidal circulation on internal tide generation and propagation in the Philippine Sea. J. Phys. Oceanogr., 44, 13861405, doi:10.1175/JPO-D-13-0142.1.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis. Bull. Amer. Meteor. Soc., 82, 247268, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., and Coauthors, 2006: An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J. Phys. Oceanogr., 36, 11481164, doi:10.1175/JPO2885.1.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., and J. Toole, 1997: Tidally-driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount. J. Phys. Oceanogr., 27, 26632693, doi:10.1175/1520-0485(1997)027<2663:TDVDSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., A. Watson, and C. Law, 1993: Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature, 364, 701703, doi:10.1038/364701a0.

    • Search Google Scholar
    • Export Citation
  • Ledwell, J. R., E. T. Montgomery, K. L. Polzin, L. C. S. Laurent, R. W. Schmitt, and J. M. Toole, 2000: Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403, 179182, doi:10.1038/35003164.

    • Search Google Scholar
    • Export Citation
  • Liang, X., and A. M. Thurnherr, 2012: Eddy-modulated internal waves and mixing on a midocean ridge. J. Phys. Oceanogr., 42, 12421248, doi:10.1175/JPO-D-11-0126.1.

    • Search Google Scholar
    • Export Citation
  • Melet, A., R. Hallberg, S. Legg, and K. Polzin, 2013: Sensitivity of the ocean state to the vertical distribution of internal-tide-driven mixing. J. Phys. Oceanogr., 43, 602615, doi:10.1175/JPO-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., D. R. Caldwell, J. D. Nash, and G. D. Gunderson, 2002: Observations of boundary mixing over the continental slope. J. Phys. Oceanogr., 32, 21132130, doi:10.1175/1520-0485(2002)032<2113:OOBMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, P., and N. Xu, 1992: Scattering of oceanic internal waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, doi:10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, P., G. Holloway, F. Henyey, and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, doi:10.1029/RG024i003p00493.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2011: Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr., 67, 493502, doi:10.1007/s10872-011-0052-1.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1981: A formal theory of internal wave scattering with applications to ocean fronts. J. Phys. Oceanogr., 11, 10781099, doi:10.1175/1520-0485(1981)011<1078:AFTOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborn, T. R., 1980: Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys. Oceanogr., 10, 8389, doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 9396, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, doi:10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., and S. Chen, 2010: Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40,213225, doi:10.1175/2009JPO4285.1.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2004: Observations of energetic high-wavenumber internal waves in the Kuroshio. J. Phys. Oceanogr., 34, 14951505, doi:10.1175/1520-0485(2004)034<1495:OOEHIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., T. M. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw, 2010: Interference pattern and propagation of the M2 internal tide south of the Hawaiian Ridge. J. Phys. Oceanogr., 40, 311325, doi:10.1175/2009JPO4256.1.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and Coauthors, 2004: Internal solitons in the northeastern South China Sea. Part 1: Sources and deep water propagation. J. Oceanic Eng., 29, 11571181, doi:10.1109/JOE.2004.840839.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Prog. Oceanogr., 40, 135162, doi:10.1016/S0079-6611(97)00025-6.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from TOPEX/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 12591262, doi:10.1029/2000GL012447.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2003: From tides to mixing along the Hawaiian Ridge. Science, 301, 355357, doi:10.1126/science.1085837.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and Coauthors, 2011: Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24, 5263, doi:10.5670/oceanog.2011.94.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126, 15411580, doi:10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004a: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 3043–3068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver, 2004b: Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell., 6, 245263, doi:10.1016/S1463-5003(03)00011-8.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and C. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 28822899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and H. Simmons, 2006: Estimates of power consumed by mixing in the ocean interior. J. Climate, 19, 48774890, doi:10.1175/JCLI3887.1.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., J. M. Toole, and R. W. Schmitt, 2001: Buoyancy forcing by turbulence above rough topography in the abyssal Brazil basin. J. Phys. Oceanogr., 31, 34763495, doi:10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., H. L. Simmons, and S. R. Jayne, 2002: Estimating tidally driven mixing in the deep ocean. Geophys. Res. Lett., 29, 2106, doi:10.1029/2002GL015633.

    • Search Google Scholar
    • Export Citation
  • Waterhouse, A. F., and Coauthors, 2014: Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate. J. Phys. Oceanogr., 44, 18541872, doi:10.1175/JPO-D-13-0104.1.

    • Search Google Scholar
    • Export Citation
  • Whalen, C. B., L. D. Talley, and J. A. MacKinnon, 2012: Spatial and temporal variability of global ocean mixing inferred from Argo profiles. Geophys. Res. Lett., 39, L18612, doi:10.1029/2012GL053196.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., and G. D. Egbert, 2014: Time-variable refraction of the internal tide at the Hawaiian Ridge. J. Phys. Oceanogr., 44, 538557, doi:10.1175/JPO-D-12-0238.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., and E. D’Asaro, 2011: A perfect focus of the internal tide from the Mariana Arc. Geophys. Res. Lett., 38, L14609, doi:10.1029/2011GL047909.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 357 128 35
PDF Downloads 195 53 3