A Note on the Influence of Spatially Varying Diffusivities on the Evolution of Buoyancy with a Nonlinear Equation of State

Magnus Hieronymus Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Magnus Hieronymus in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The oceanic buoyancy sinks from thermobaricity and cabbeling are quantified using hydrography and parameterized diffusive fluxes of heat and salt. A novelty in this study is that the effect of spatially varying diffusivities is considered and quantified. The spatial distribution as well as averages from different ocean basins of the cabbeling and thermobaricity sinks are shown and discussed. The contributions from isoneutral and dianeutral diffusion to the cabbeling and thermobaricity sinks are calculated separately, and their relative importance is seen to vary in the different ocean basins.

Corresponding author address: Magnus Hieronymus, Dept. of Meteorology, Stockholm University, Svante Arrhenius Väg 16C, 10691 Stockholm, Sweden. E-mail: magnus@misu.su.se

Abstract

The oceanic buoyancy sinks from thermobaricity and cabbeling are quantified using hydrography and parameterized diffusive fluxes of heat and salt. A novelty in this study is that the effect of spatially varying diffusivities is considered and quantified. The spatial distribution as well as averages from different ocean basins of the cabbeling and thermobaricity sinks are shown and discussed. The contributions from isoneutral and dianeutral diffusion to the cabbeling and thermobaricity sinks are calculated separately, and their relative importance is seen to vary in the different ocean basins.

Corresponding author address: Magnus Hieronymus, Dept. of Meteorology, Stockholm University, Svante Arrhenius Väg 16C, 10691 Stockholm, Sweden. E-mail: magnus@misu.su.se
Save
  • Danabasoglu, G., and J. Marshall, 2007: Effects of vertical variation of thickness diffusivity in an ocean general circulation model. Ocean Modell., 18, 122141, doi:10.1016/j.ocemod.2007.03.006.

    • Search Google Scholar
    • Export Citation
  • Davis, R. E., 1994: Diapycnal mixing in the ocean: Equations for large-scale budgets. J. Phys. Oceanogr., 24, 777800, doi:10.1175/1520-0485(1994)024<0777:DMITOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Decloedt, T., and D. S. Luther, 2010: On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J. Phys. Oceanogr., 40, 487508, doi:10.1175/2009JPO4275.1.

    • Search Google Scholar
    • Export Citation
  • Ferreira, D., J. Marshall, and P. Heimbach, 2005: Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J. Phys. Oceanogr., 35, 18911910, doi:10.1175/JPO2785.1.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V. V., and K. P. Koltermann, 2004: WOCE global hydrographic climatology: A technical report. Berichte des Bundesamtes für Seeschifffahrt und Hydrographie 35, 52 pp.

  • Graham, F. S., and T. J. McDougall, 2013: Quantifying the nonconservative production of Conservative Temperature, potential temperature and entropy. J. Phys. Oceanogr., 43, 838862, doi:10.1175/JPO-D-11-0188.1.

    • Search Google Scholar
    • Export Citation
  • Gregory, J. M., 2000: Vertical heat transport in the ocean and their effect on time dependent climate change. Climate Dyn., 16, 501515, doi:10.1007/s003820000059.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2013a: The budgets of heat and salinity in NEMO. Ocean Modell., 67, 2838, doi:10.1016/j.ocemod.2013.03.006.

    • Search Google Scholar
    • Export Citation
  • Hieronymus, M., and J. Nycander, 2013b: The buoyancy budget with a nonlinear equation of state. J. Phys. Oceanogr., 43, 176186, doi:10.1175/JPO-D-12-063.1.

    • Search Google Scholar
    • Export Citation
  • IOC, SCOR, and IAPSO, 2010: The International Thermodynamic Equation of Seawater—2010: Calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, Manuals and Guides 56, 220 pp. [Available online at http://www.teos-10.org/pubs/TEOS-10_Manual.pdf.]

  • Klocker, A., and T. J. McDougall, 2010: Influence of the nonlinear equation of state on global estimates of dianeutral advection and diffusion. J. Phys. Oceanogr.,40, 1690–1709, doi:10.1175/2010JPO4303.1.

  • McDougall, T. J., 1987: Thermobaricity, cabbeling and water-mass conversion. J. Geophys. Res., 92, 54485464, doi:10.1029/JC092iC05p05448.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., 2003: Potential enthalpy: A conservative ocean variable for evaluating heat content and heat fluxes. J. Phys. Oceanogr., 33, 945963, doi:10.1175/1520-0485(2003)033<0945:PEACOV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and Y. You, 1990: Implications of the nonlinear equation of state for upwelling in the ocean interior. J. Geophys. Res., 95, 13 26313 276, doi:10.1029/JC095iC08p13263.

    • Search Google Scholar
    • Export Citation
  • McDougall, T. J., and J. R. Garrett, 1992: Scalar conservation equations in a turbulent ocean. Deep-Sea Res., 39A, 1953–1966, doi:10.1016/0198-0149(92)90007-G.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schanze, J. J., and R. W. Schmitt, 2013: Estimates of cabbeling in the global ocean. J. Phys. Oceanogr., 43, 698705, doi:10.1175/JPO-D-12-0119.1.

    • Search Google Scholar
    • Export Citation
  • Smith, W. H. F., and D. T. Sandwell, 1997: Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 259 180 1
PDF Downloads 41 15 0