Global Calculation of Tidal Energy Conversion into Vertical Normal Modes

Saeed Falahat Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Saeed Falahat in
Current site
Google Scholar
PubMed
Close
,
Jonas Nycander Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Jonas Nycander in
Current site
Google Scholar
PubMed
Close
,
Fabien Roquet Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Fabien Roquet in
Current site
Google Scholar
PubMed
Close
, and
Moundheur Zarroug Department of Meteorology, Stockholm University, Stockholm, Sweden

Search for other papers by Moundheur Zarroug in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical slope) and the bathymetric height is small relative to the vertical scale of the wave, as well as that the horizontal tidal excursion is smaller than the horizontal topographic scale. The calculation is performed for the M2 tidal constituent. In contrast to previous similar computations, the internal tide is projected onto vertical eigenmodes, which gives two advantages. First, the vertical density profile and the finite ocean depth are taken into account in a fully consistent way, in contrast to earlier work based on the WKB approximation. Nevertheless, the WKB-based total global conversion follows closely that obtained using the eigenmode decomposition in each of the latitudinal and vertical distributions. Second, the information about the distribution of the conversion energy over different vertical modes is valuable, since the lowest modes can propagate over long distances, while high modes are more likely to dissipate locally, near the generation site. It is found that the difference between the vertical distributions of the tidal conversion into the vertical modes is smaller for the case of very deep ocean than the shallow-ocean depth. The results of the present work pave the way for future work on the vertical and horizontal distribution of the mixing caused by internal tides.

Corresponding author address: Saeed Falahat, Dept. of Meteorology, Stockholm University, Stockholm 106 91, Sweden. E-mail: saeed@misu.su.se

Abstract

A direct calculation of the tidal generation of internal waves over the global ocean is presented. The calculation is based on a semianalytical model, assuming that the internal tide characteristic slope exceeds the bathymetric slope (subcritical slope) and the bathymetric height is small relative to the vertical scale of the wave, as well as that the horizontal tidal excursion is smaller than the horizontal topographic scale. The calculation is performed for the M2 tidal constituent. In contrast to previous similar computations, the internal tide is projected onto vertical eigenmodes, which gives two advantages. First, the vertical density profile and the finite ocean depth are taken into account in a fully consistent way, in contrast to earlier work based on the WKB approximation. Nevertheless, the WKB-based total global conversion follows closely that obtained using the eigenmode decomposition in each of the latitudinal and vertical distributions. Second, the information about the distribution of the conversion energy over different vertical modes is valuable, since the lowest modes can propagate over long distances, while high modes are more likely to dissipate locally, near the generation site. It is found that the difference between the vertical distributions of the tidal conversion into the vertical modes is smaller for the case of very deep ocean than the shallow-ocean depth. The results of the present work pave the way for future work on the vertical and horizontal distribution of the mixing caused by internal tides.

Corresponding author address: Saeed Falahat, Dept. of Meteorology, Stockholm University, Stockholm 106 91, Sweden. E-mail: saeed@misu.su.se
Save
  • Alford, M. H., 2003: Redistribution of energy available for ocean mixing by long-range internal-wave propagation. Nature, 423, 159–163, doi:10.1038/nature01628.

    • Search Google Scholar
    • Export Citation
  • Balmforth, N. J., and T. Peacock, 2009: Tidal conversion by supercritical topography. J. Phys. Oceanogr., 39, 1965–1974, doi:10.1175/2009JPO4057.1.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975a: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705–722, doi:10.1017/S0022112075000560.

    • Search Google Scholar
    • Export Citation
  • Bell, T. H., 1975b: Topographically generated internal waves in the open ocean. J. Geophys. Res., 80, 320–327, doi:10.1029/JC080i003p00320.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., O. B. Fringer, and E. D. Zaron, 2012: Regional models of internal tides. Oceanography, 25, 56–65, doi:10.5670/oceanog.2012.42.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. deSzoeke, M. G. Schlax, K. E. Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433–460, doi:10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and R. D. Ray, 2000: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature, 405, 775–778, doi:10.1038/35015531.

    • Search Google Scholar
    • Export Citation
  • Egbert, G. D., and S. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183–204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Falahat, S., J. Nycander, F. Roquet, A. M. Thurnherr, and T. Hibiya, 2014: Comparison of calculated energy flux of internal tides with microstructure measurements. Tellus, 66A, 23240, doi:10.3402/tellusa.v66.23240.

    • Search Google Scholar
    • Export Citation
  • Garrett, C., and E. Kunze, 2007: Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech., 39, 57–87, doi:10.1146/annurev.fluid.39.050905.110227.

    • Search Google Scholar
    • Export Citation
  • Goff, J. A., 1991: A global and regional stochastic analysis of near ridge abyssal hill morphology. J. Geophys. Res., 96, 21 713–21 737, doi:10.1029/91JB02275.

    • Search Google Scholar
    • Export Citation
  • Gouretski, V., and K. Koltermann, 2004: WOCE Global Hydrographic Climatology. Berichtedes Bundesamtes für Seeschifffahrt und Hydrographi, 52 pp.

  • Green, M., and J. Nycander, 2013: A comparison of tidal conversion parameterizations for tidal models. J. Phys. Oceanogr., 43, 104–119, doi:10.1175/JPO-D-12-023.1.

    • Search Google Scholar
    • Export Citation
  • Griffiths, S. D., and R. H. J. Grimshaw, 2007: Internal tide generation at the continental shelf modeled using a modal decomposition: Two-dimensional results. J. Phys. Oceanogr., 37, 428–451, doi:10.1175/JPO3068.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S. K., M. G. G. Foreman, W. R. Crawford, and J. Y. Cherniawsky, 2000: Numerical modelling of internal tide generation along the Hawaiian Ridge. J. Phys. Oceanogr., 30, 1083–1098, doi:10.1175/1520-0485(2000)030<1083:NMOITG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, S. M., J. D. Nash, and E. Kunze, 2010: Internal-tide energy over topography. J. Geophys. Res.,115, C06014, doi:10.1029/2009JC005618.

  • Kelly, S. M., J. D. Nash, K. I. Martini, M. H. Alford, and E. Kunze, 2012: The cascade of tidal energy from low to high modes on a continental slope. J. Phys. Oceanogr., 42, 1217–1232, doi:10.1175/JPO-D-11-0231.1.

    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., B. S. Powell, and G. S. Carter, 2013: Effects of remote generation sites on model estimates of M2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43, 187–204, doi:10.1175/JPO-D-12-081.1.

    • Search Google Scholar
    • Export Citation
  • Khatiwala, S., 2003: Generation of internal tides in an ocean of finite depth: Analytical and numerical calculations. Deep-Sea Res. I, 50, 3–21, doi:10.1016/S0967-0637(02)00132-2.

    • Search Google Scholar
    • Export Citation
  • Klymak, J. M., S. Legg, and R. Pinkel, 2010: A simple parameterization of turbulent tidal mixing near supercritical topography. J. Phys. Oceanogr., 40, 2059–2074, doi:10.1175/2010JPO4396.1.

    • Search Google Scholar
    • Export Citation
  • Legg, S., and J. Klymak, 2008: Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. J. Phys. Oceanogr., 38, 1949–1964, doi:10.1175/2008JPO3777.1.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2002: Conversion of the barotropic tide. J. Phys. Oceanogr., 32, 1554–1566, doi:10.1175/1520-0485(2002)032<1554:COTBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Llewellyn Smith, S. G., and W. R. Young, 2003: Tidal conversion at a very steep ridge. J. Fluid Mech., 495, 175–191, doi:10.1017/S0022112003006098.

    • Search Google Scholar
    • Export Citation
  • Melet, A., M. Nikurashin, C. Muller, S. Falahat, J. Nycander, P. G. Timko, B. K. Arbic, and J. Goff, 2013: Internal tide generation by abyssal hills using analytical theory. J. Geophys. Res. Oceans, 118, 6303–6318, doi:10.1002/2013JC009212.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., and P. E. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107, doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Munk, W., and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 1977–2010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nash, J. D., E. Kunze, C. M. Lee, and T. B. Sanford, 2006: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii. J. Phys. Oceanogr., 36, 1123–1135, doi:10.1175/JPO2883.1.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., and T. Hibiya, 2011: Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations. J. Oceanogr., 67, 493–502, doi:10.1007/s10872-011-0052-1.

    • Search Google Scholar
    • Export Citation
  • Nycander, J., 2005: Generation of internal waves in the deep ocean by tides. J. Geophys. Res., 110, C10028, doi:10.1029/2004JC002487.

  • Nycander, J., 2006: Tidal generation of internal waves from a periodic array of steep ridges. J. Fluid Mech., 567, 415–432, doi:10.1017/S002211200600228X.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., J. M. Toole, J. R. Ledwell, and R. W. Schmitt, 1997: Spatial variability of turbulent mixing in the abyssal ocean. Science, 276, 93–96, doi:10.1126/science.276.5309.93.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 1220–1236, doi:10.1175/JPO2889.1.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1996: Surface manifestation of internal tides generated near Hawaii. Geophys. Res. Lett., 23, 2101–2104, doi:10.1029/96GL02050.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and G. T. Mitchum, 1997: Surface manifestation of internal tides in the deep ocean: Observation from altimetry and island gauges. Prog. Oceanogr., 40, 135–162, doi:10.1016/S0079-6611(97)00025-6.

    • Search Google Scholar
    • Export Citation
  • Ray, R. D., and D. E. Cartwright, 2001: Estimates of internal tide energy fluxes from Topex/Poseidon altimetry: Central North Pacific. Geophys. Res. Lett., 28, 1259–1263, doi:10.1029/2000GL012447.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., R. W. Hallberg, and B. K. Arbic, 2004: Internal generation in a global baroclinic tide model. Deep-Sea Res., 51, 3043–3068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., and C. J. R. Garrett, 2002: The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr., 32, 2882–2899, doi:10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • St. Laurent, L. C., S. Stringer, C. Garrett, and D. P. Joncas, 2003: The generation of internal tides at abrupt topography. Deep-Sea Res. I, 50, 987–1003, doi:10.1016/S0967-0637(03)00096-7.

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36, 281–314, doi:10.1146/annurev.fluid.36.050802.122121.

    • Search Google Scholar
    • Export Citation
  • Zarroug, M., J. Nycander, and K. Döös, 2010: Energetics of tidally generated internal waves for nonuniform stratification. Tellus, 62A, 71–79, doi:10.1111/j.1600-0870.2009.00415.x.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., R. W. Schmitt, and R. X. Huang, 1999: The relative influence of diapycnal mixing and hydrologic forcing on the stability of the thermohaline circulation. J. Phys. Oceanogr., 29, 1096–1108, doi:10.1175/1520-0485(1999)029<1096:TRIODM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., J. M. Becker, M. A. Merrifield, and G. C. Carter, 2009: Model estimate of M2 internal tide generated over Mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39, 2635–2651, doi:10.1175/2008JPO4136.1.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., M. A. Merrifield, G. S. Carter, D. S. Luther, M. D. Levine, and T. J. Boyd, 2011: Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 2021–2036, doi:10.1175/JPO-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2644 569 173
PDF Downloads 1558 177 17