Role of Resolved and Parameterized Eddies in the Labrador Sea Balance of Heat and Buoyancy

Oleg A. Saenko * Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada

Search for other papers by Oleg A. Saenko in
Current site
Google Scholar
PubMed
Close
,
Frédéric Dupont Canadian Meteorological Centre, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Frédéric Dupont in
Current site
Google Scholar
PubMed
Close
,
Duo Yang * Canadian Centre for Climate Modelling and Analysis, Environment Canada, Victoria, British Columbia, Canada

Search for other papers by Duo Yang in
Current site
Google Scholar
PubMed
Close
,
Paul G. Myers Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada

Search for other papers by Paul G. Myers in
Current site
Google Scholar
PubMed
Close
,
Igor Yashayaev Bedford Institute of Oceanography, Fisheries and Oceans Canada, Dartmouth, Nova Scotia, Canada

Search for other papers by Igor Yashayaev in
Current site
Google Scholar
PubMed
Close
, and
Gregory C. Smith Meteorological Research Division, Environment Canada, Dorval, Quebec, Canada

Search for other papers by Gregory C. Smith in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Deep convection in the Labrador Sea is an important component of the global ocean ventilation. The associated loss of heat to the atmosphere from the interior of the sea is thought to be mostly supplied by mesoscale eddies, generated either remotely or as a result of convection itself—processes that are not resolved by low-resolution ocean climate models. The authors first employ a high-resolution (°) ocean model forced with high-resolution (33 km, 3 h) atmospheric fields to further elaborate on the role of mesoscale eddies in maintaining the balance of heat and buoyancy in the Labrador Sea. In general agreement with previous studies, it is found that eddies remove heat along the coast and supply it to the interior. Some of the eddies that are generated because of the barotropic instability off the west coast of Greenland are recaptured by the boundary current. In the region of deep convection, the convergence of heat and buoyancy by eddies significantly increases with the deepening of the winter mixed layer. In addition, the vertical eddy flux plays an important part in the heat budget of the upper Labrador Sea, accounting for up to half of the heat loss to the atmosphere north of 60°N. A low-resolution (1°) model with parameterized eddies is then applied to show that it does capture, qualitatively, the general structure of eddy buoyancy advection along the Labrador Current. However, the 1° model is deficient in this regard in the most eddy active region off the west coast of Greenland, although some improvements can be made by forcing it with the high-resolution atmospheric fields.

Corresponding author address: Oleg A. Saenko, Canadian Centre for Climate Modelling and Analysis, Environment Canada, 3800 Finnerty Rd., Victoria BC V8P 5C2, Canada. E-mail: oleg.saenko@ec.gc.ca

Abstract

Deep convection in the Labrador Sea is an important component of the global ocean ventilation. The associated loss of heat to the atmosphere from the interior of the sea is thought to be mostly supplied by mesoscale eddies, generated either remotely or as a result of convection itself—processes that are not resolved by low-resolution ocean climate models. The authors first employ a high-resolution (°) ocean model forced with high-resolution (33 km, 3 h) atmospheric fields to further elaborate on the role of mesoscale eddies in maintaining the balance of heat and buoyancy in the Labrador Sea. In general agreement with previous studies, it is found that eddies remove heat along the coast and supply it to the interior. Some of the eddies that are generated because of the barotropic instability off the west coast of Greenland are recaptured by the boundary current. In the region of deep convection, the convergence of heat and buoyancy by eddies significantly increases with the deepening of the winter mixed layer. In addition, the vertical eddy flux plays an important part in the heat budget of the upper Labrador Sea, accounting for up to half of the heat loss to the atmosphere north of 60°N. A low-resolution (1°) model with parameterized eddies is then applied to show that it does capture, qualitatively, the general structure of eddy buoyancy advection along the Labrador Current. However, the 1° model is deficient in this regard in the most eddy active region off the west coast of Greenland, although some improvements can be made by forcing it with the high-resolution atmospheric fields.

Corresponding author address: Oleg A. Saenko, Canadian Centre for Climate Modelling and Analysis, Environment Canada, 3800 Finnerty Rd., Victoria BC V8P 5C2, Canada. E-mail: oleg.saenko@ec.gc.ca
Save
  • Barnier, B., and Coauthors, 2007: Eddy-permitting ocean circulation hindcasts of past decades. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 8–10. [Available online at http://www.clivar.org/sites/default/files/documents/wgomd/core/Barnier_07.pdf.]

  • Beckmann, A., C. W. Böning, B. Brugge, and D. Stammer, 1994: On the generation and role of eddy variability in the central North Atlantic Ocean. J. Geophys. Res., 99, 20 38120 391, doi:10.1029/94JC01654.

    • Search Google Scholar
    • Export Citation
  • Blanke, B., and P. Delecluse, 1993: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr., 23, 13631388, doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chanut, J., B. Barnier, W. Large, L. Debreu, T. Penduff, J. M. Molines, and P. Mathiot, 2008: Mesoscale eddies in the Labrador Sea and their contribution to convection and restratification. J. Phys. Oceanogr., 38, 16171643, doi:10.1175/2008JPO3485.1.

    • Search Google Scholar
    • Export Citation
  • Clarke, R. A., and J.-C. Gascard, 1983: The formation of Labrador Sea Water. Part I: Large-scale processes. J. Phys. Oceanogr., 13, 17641778, doi:10.1175/1520-0485(1983)013<1764:TFOLSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cuny, J., P. B. Rhines, P. P. Niiler, and S. Bacon, 2002: Labrador Sea boundary currents and the fate of the Irminger Sea Water. J. Phys. Oceanogr., 32, 627647, doi:10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, R. G., M. S. McCartneya, and T. M. Joyce, 1998: Oceanic transport of subpolar climate signals to mid-depths subtropical waters. Nature, 391, 575577, doi:10.1038/35356.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., and Coauthors, 2014: North Atlantic simulations in Coordinated Ocean-Ice Reference Experiments phase II (CORE-II). Part I: Mean states. Ocean Modell., 73, 76107, doi:10.1016/j.ocemod.2013.10.005.

    • Search Google Scholar
    • Export Citation
  • Deacu, D., and P. G. Myers, 2005: Effect of a variable eddy transfer coefficient in an eddy-permitting model of the subpolar North Atlantic Ocean. J. Phys. Oceanogr., 35, 289307, doi:10.1175/JPO-2674.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc.,137, 553–597, doi:10.1002/qj.828.

  • Dickson, R., J. Lazier, J. Meincke, P. Rhines, and J. Swift, 1996: Long-term coordinated changes in the convective activity of the North Atlantic. Prog. Oceanogr., 38, 241295, doi:10.1016/S0079-6611(97)00002-5.

    • Search Google Scholar
    • Export Citation
  • Eady, E., 1949: Long waves and cyclone waves. Tellus, 1, 3352, doi:10.1111/j.2153-3490.1949.tb01265.x.

  • Eden, C., and C. Böning, 2002: Sources of eddy kinetic energy in the Labrador Sea. J. Phys. Oceanogr., 32, 33463363, doi:10.1175/1520-0485(2002)032<3346:SOEKEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaspar, P., Y. Gregoris, and J. M. Lefevre, 1990: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site. J. Geophys. Res., 95, 16 17916 193, doi:10.1029/JC095iC09p16179.

    • Search Google Scholar
    • Export Citation
  • Gelderloos, R., C. A. Katsman, and S. S. Drijfhout, 2011: Assessing the roles of three eddy types in restratifying the Labrador Sea after deep convection. J. Phys. Oceanogr., 41, 21022119, doi:10.1175/JPO-D-11-054.1.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean general circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995: Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 25, 463474, doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gnanadesikan, A., R. D. Slater, P. S. Swathi, and G. K. Vallis, 2005: The energetics of ocean heat transport. J. Climate, 18, 26042616, doi:10.1175/JCLI3436.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S., and Coauthors, 2009: Coordinated Ocean-Ice Reference Experiments (COREs). Ocean Modell., 26, 146, doi:10.1016/j.ocemod.2008.08.007.

    • Search Google Scholar
    • Export Citation
  • Hátún, H., C. C. Eriksen, and P. B. Rhines, 2007: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry. J. Phys. Oceanogr., 37, 28382854, doi:10.1175/2007JPO3567.1.

    • Search Google Scholar
    • Export Citation
  • Houghton, R. W., and M. H. Visbeck, 2002: Quasi-decadal salinity fluctuations in the Labrador Sea. J. Phys. Oceanogr., 32, 687701, doi:10.1175/1520-0485(2002)032<0687:QDSFIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, H., and J. Marshall, 1997: Restratification after deep convection. J. Phys. Oceanogr., 27, 22762287, doi:10.1175/1520-0485(1997)027<2276:RADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Katsman, C. A., M. A. Spall, and R. S. Pickart, 2004: Boundary current eddies and their role in the restratification of the Labrador Sea. J. Phys. Oceanogr., 34, 19671983, doi:10.1175/1520-0485(2004)034<1967:BCEATR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kawasaki, T., and H. Hasumi, 2014: Effect of freshwater from the West Greenland Current on the winter deep convection in the Labrador Sea. Ocean Modell., 75, 5164, doi:10.1016/j.ocemod.2014.01.003.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., and S. G. Yeager, 2009: Global climatology of an interannually varying air–sea flux data set. Climate Dyn., 33, 341364, doi:10.1007/s00382-008-0441-3.

    • Search Google Scholar
    • Export Citation
  • Lavender, K., R. E. Davis, and W. B. Owens, 2000: Mid-depth recirculation observed in the interior Labrador and Irminger Seas by direct velocity measurements. Nature, 407, 6669, doi:10.1038/35024048.

    • Search Google Scholar
    • Export Citation
  • Lazier, J. R. N., R. S. Pickart, and P. B. Rhines, 2001: Deep convection in the Labrador Sea. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., International Geophysics Series, Vol. 77, Academic Press, 387–400.

  • Lazier, J. R. N., R. Hendry, A. Clarke, I. Yashayaev, and P. Rhines, 2002: Convection and restratification in the Labrador Sea. Deep-Sea Res. I, 49, 18191835, doi:10.1016/S0967-0637(02)00064-X.

    • Search Google Scholar
    • Export Citation
  • Le Galloudec, O., R. Bourdalle-Badie, Y. Drillet, C. Derval, and C. Bricaud, 2008: Simulation of meso-scale eddies in the Mercator Global Ocean High Resolution Model. Mercator-Ocean Newsletter, No. 31, Ramonville Saint-Agne, France, 22–30. [Available online at http://www.mercator-ocean.fr/eng/actualites-agenda/newsletter/newsletter-Newsletter-31-The-GODAE-project.]

  • Lilly, J. M., and P. B. Rhines, 2002: Coherent eddies in the Labrador Sea observed from a mooring. J. Phys. Oceanogr., 32, 585598, doi:10.1175/1520-0485(2002)032<0585:CEITLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, M. Visbeck, R. Davis, J. R. N. Lazier, F. Schott, and D. Farmer, 1999: Observing deep convection in the Labrador Sea during winter 1994/95. J. Phys. Oceanogr., 29, 20652098, doi:10.1175/1520-0485(1999)029<2065:ODCITL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, J. M., P. B. Rhines, F. Schott, K. Lavender, J. Lazier, U. Send, and E. D’Asaro, 2003: Observations of the Labrador Sea eddy field. Prog. Oceanogr.,59, 75–176, doi:10.1016/j.pocean.2003.08.013.

  • Lumpkin, R., and G. C. Johnson, 2013: Global ocean surface velocities from drifters: Mean, variance, El Niño–Southern Oscillation response, and seasonal cycle. J. Geophys. Res., 118, 29923006, doi:10.1002/jgrc.20210.

    • Search Google Scholar
    • Export Citation
  • Luo, H., A. Bracco, and E. Di Lorenzo, 2011: The interannual variability of the surface eddy kinetic energy in the Labrador Sea. Prog. Oceanogr., 91, 295311, doi:10.1016/j.pocean.2011.01.006.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine, version 3.0. Note du Pole de modélisation de l’Institut Pierre-Simon Laplace 27, 217 pp. [Available online at http://www.nemo-ocean.eu/content/download/5302/31828/file/NEMO_book.pdf.]

  • Madec, G., and Coauthors, 2012: NEMO ocean engine, version 3.4. Note du Pole de modélisation de l’Institut Pierre-Simon Laplace 27, 367 pp. [Available online at http://www.nemo-ocean.eu/content/download/21612/97924/file/NEMO_book_3_4.pdf.]

  • Maximenko, N. A., and P. P. Niiler, 1999: Hybrid decade-mean global sea level with mesoscale resolution. Recent Advances in Marine Science and Technology, N. Saxena, Ed., PACON International, 55–59.

  • McCartney, M. S., 1992: Recirculating components to the deep boundary current of the northern North Atlantic. Prog. Oceanogr.,29, 283–383, doi:10.1016/0079-6611(92)90006-l.

  • McGeehan, T., and W. Maslowski, 2011: Impact of shelf-basin freshwater transport on deep convection in the western Labrador Sea. J. Phys. Oceanogr., 41, 21872210, doi:10.1175/JPO-D-11-01.1.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., R. S. Pickart, I. A. Renfrew, and K. Våge, 2014: What causes the location of the air-sea turbulent heat flux maximum over the Labrador Sea? Geophys. Res. Lett.,41, 3628–3635, doi:10.1002/2014GL059940.

  • Myers, P. G., 2005: Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation. Geophys. Res. Lett., 32, L06605, doi:10.1029/2004GL022082.

    • Search Google Scholar
    • Export Citation
  • Palter, J. B., M. S. Lozier, and K. L. Lavender, 2008: How does Labrador Sea Water enter the deep western boundary current? J. Phys. Oceanogr., 38, 968983, doi:10.1175/2007JPO3807.1.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., M. A. Spall, and J. R. N. Lazier, 1997: Mid-depth ventilation in the western boundary current system of the sub-polar gyre. Deep-Sea Res., 44, 10251054, doi:10.1016/S0967-0637(96)00122-7.

    • Search Google Scholar
    • Export Citation
  • Pickart, R. S., D. J. Torres, and R. A. Clarke, 2002: Hydrography of the Labrador Sea during active convection. J. Phys. Oceanogr., 32, 428457, doi:10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rykova, T., F. Straneo, J. M. Lilly, and I. Yashayaev, 2009: Irminger Current anticyclones in the Labrador Sea observed in the hydrographic record, 1990–2004. J. Mar. Res., 67, 361384, doi:10.1357/002224009789954739.

    • Search Google Scholar
    • Export Citation
  • Sathiyamoorthy, S., and G. W. K. Moore, 2002: Buoyancy flux at Ocean Weather Station Bravo. J. Phys. Oceanogr., 32, 458474, doi:10.1175/1520-0485(2002)032<0458:BFAOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmitt, R. W., P. S. Bogden, and C. E. Dorman, 1989: Evaporation minus precipitation and density fluxes for the North Atlantic. J. Phys. Oceanogr., 19, 12081221, doi:10.1175/1520-0485(1989)019<1208:EMPADF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smethie, W. M., Jr., R. A. Fine, A. Putzka, and E. P. Jones, 2000: Tracing the flow North Atlantic Deep Water using chlorofluorocarbons. J. Geophys. Res., 105, 14 29714 323, doi:10.1029/1999JC900274.

    • Search Google Scholar
    • Export Citation
  • Smith, G. C., F. Roy, P. Mann, F. Dupont, B. Brasnett, J.-F. Lemieux, S. Larochea, and S. Belaira, 2013: A new atmospheric dataset for forcing ice–ocean models: Evaluation of reforecasts using the Canadian global deterministic prediction system. Quart. J. Roy. Meteor. Soc., 140, 881–894, doi:10.1002/qj.2194.

    • Search Google Scholar
    • Export Citation
  • Spall, M. A., 2004: Boundary currents and water mass transformation in marginal seas. J. Phys. Oceanogr., 34, 11971213, doi:10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straneo, F., 2006: Heat and freshwater transport through the central Labrador Sea. J. Phys. Oceanogr., 36, 606628, doi:10.1175/JPO2875.1.

    • Search Google Scholar
    • Export Citation
  • Talley, L. D., and M. S. McCartney, 1982: Distribution and circulation of Labrador Sea Water. J. Phys. Oceanogr., 12, 11891205, doi:10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Treguier, A. M., S. Theetten, E. P. Chassignet, T. Penduff, R. Smith, L. Talley, J. O. Beismann, and C. Böning, 2005: The North Atlantic subpolar gyre in four high-resolution models. J. Phys. Oceanogr., 35, 757774, doi:10.1175/JPO2720.1.

    • Search Google Scholar
    • Export Citation
  • Våge, K., and Coauthors, 2009: Surprising return of deep convection to the subpolar North Atlantic Ocean in winter. Nat. Geosci., 2, 6772, doi:10.1038/ngeo382.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, and H. Jones, 1996: Dynamics of isolated convective regions in the ocean. J. Phys. Oceanogr., 26, 17211734, doi:10.1175/1520-0485(1996)026<1721:DOICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr., 27, 381402, doi:10.1175/1520-0485(1997)027<0381:SOETCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., and T. M. C. Hughes, 1992: Stability and variability of the thermohaline circulation and its link to climate. Trends in Physical Oceanography, Research Trends Series, Vol. 1, Council of Scientific Research Integration, 15–70.

  • White, M. A., and K. J. Heywood, 1995: Seasonal and interannual changes in the North Atlantic subpolar gyre from Geosat and TOPEX/POSEIDON altimetry. J. Geophys. Res., 100, 24 93124 941, doi:10.1029/95JC02123.

    • Search Google Scholar
    • Export Citation
  • Yang, D., and O. A. Saenko, 2012: Ocean heat transport and its projected change in CanESM2. J. Climate, 25, 81488163, doi:10.1175/JCLI-D-11-00715.1.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., 2007: Hydrographic changes in the Labrador Sea, 1960–2005. Prog. Oceanogr., 73, 242276, doi:10.1016/j.pocean.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., and J. W. Loder, 2009: Enhanced production of Labrador Sea Water in 2008. Geophys. Res. Lett., 36, L01606, doi:10.1029/2008GL036162.

    • Search Google Scholar
    • Export Citation
  • Yashayaev, I., H. M. van Aken, N. P. Holliday, and M. Bersch, 2007: Transformation of the Labrador Sea Water in the subpolar North Atlantic. Geophys. Res. Lett., 34, L22605, doi:10.1029/2007GL031812.

    • Search Google Scholar
    • Export Citation
  • Yu, L., R. A. Weller, and B. Sun, 2004: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J. Climate, 17, 373393, doi:10.1175/1520-0442(2004)017<0373:ILASHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 265 77 4
PDF Downloads 216 77 1