• Batchelder, H. P., , C. A. Edwards, , and T. M. Powell, 2002: Individual-based models of copepod populations in coastal upwelling regions: Implications of physiologically and environmentally influence diel vertical migration on demographic success and nearshore retention. Prog. Oceanogr., 53, 307333.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1950: The application of the similarity theory of turbulence to atmospheric diffusion. Quart. J. Roy. Meteor. Soc., 76, 133146.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1952: Diffusion in a field of homogenous turbulence. II. The relative motion of particles. Proc. Cambridge Philos. Soc., 48, 345362.

    • Search Google Scholar
    • Export Citation
  • Batchelor, G. K., 1959: Small-scale variation of convected quantities like temperature in turbulent fluid. J. Fluid Mech., 5, 113133.

    • Search Google Scholar
    • Export Citation
  • Bluteau, C. E., , N. L. Jones, , and G. N. Ivey, 2011: Estimating turbulent kinetic energy dissipation using the inertial subrange method in environmental flows. Limnol. Oceanogr. Methods, 9, 302321.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: The statistical theory of turbulence and the problem of diffusion in the atmosphere. J. Meteor., 7, 283290.

  • Brooks, N. H., 1960: Diffusion of sewage effluent in an ocean-current. Proc. First Int. Conf. on Waste Disposal in the Marine Environment, Berkeley, CA, University of California, Berkeley, 246–267.

  • Crimaldi, J. P., , M. B. Wiley, , and J. R. Koseff, 2002: The relationship between mean and instantaneous structure in turbulent passive scalar plumes. J. Turbul., 3 (14), doi:10.1088/1468-5248/3/1/014.

    • Search Google Scholar
    • Export Citation
  • Dekshenieks, M. M., , P. L. Donaghay, , J. M. Sullivan, , J. E. B. Rines, , T. R. Osborn, , and M. S. Twardowski, 2001: Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar. Ecol. Prog. Ser., 223, 6171.

    • Search Google Scholar
    • Export Citation
  • Drake, P. T., , M. A. McManus, , and C. D. Storlazzi, 2005: Local wind forcing of the Monterey Bay area inner shelf. Cont. Shelf Res., 25, 397417.

    • Search Google Scholar
    • Export Citation
  • Ebbesmeyer, C. C., , and A. Okubo, 1975: Variance relations between shear-diffusion and radially symmetric turbulent diffusion. Deep-Sea Res., 22, 441445.

    • Search Google Scholar
    • Export Citation
  • Efron, B., , and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. CRC Press, 430 pp.

  • Emery, W. J., , and R. E. Thomson, 2004: Data Analysis Methods in Physical Oceanography. 2nd ed. Elsevier, 638 pp.

  • Fischer, H. B., , E. J. List, , R. C. Y. Koh, , J. Imberger, , and N. H. Brooks, 1979: Mixing in Inland and Coastal Waters. Academic Press, 483 pp.

    • Search Google Scholar
    • Export Citation
  • Fong, D. A., , and M. T. Stacey, 2003: Horizontal dispersion of a near-bed coastal plume. J. Fluid Mech., 489, 239267.

  • Jones, N. L., , R. J. Lowe, , G. Pawlak, , D. A. Fong, , and S. G. Monismith, 2008: Plume dispersion on a fringing coral reef system. Limnol. Oceanogr., 53, 22732286.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., , J. C. Wyngaard, , Y. Izumi, , and O. R. Coté, 1972: Spectral characteristics of surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563589.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk USSR., 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Kullenberg, G., 1972: Apparent horizontal diffusion in stratified vertical shear flow. Tellus, 24, 1728.

  • MacKinnon, J. A., , and M. C. Gregg, 2003: Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J. Phys. Oceanogr., 33, 14761492.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1968: Some remarks on the importance of the “shear effect” on horizontal diffusion. J. Oceanogr. Soc. Japan, 24, 6069.

    • Search Google Scholar
    • Export Citation
  • Okubo, A., 1971: Oceanic diffusion diagrams. Deep-Sea Res., 18, 789802.

  • Osborn, T. R., , and C. S. Cox, 1972: Oceanic fine structure. Geophys. Fluid Dyn., 3, 321345.

  • Petruncio, E. T., , L. K. Rosenfeld, , and J. D. Paduan, 1998: Observations of the internal tide in Monterey Canyon. J. Phys. Oceanogr., 28, 18731903.

    • Search Google Scholar
    • Export Citation
  • Richardson, L. F., 1926: Atmospheric diffusion shown on a distance-neighbour graph. Proc. Roy. Soc. London, A110, 709737.

  • Richardson, L. F., , and H. Stommel, 1948: Note on eddy diffusion in the sea. J. Meteor., 5, 238240.

  • Roberts, P. J. W., 1999: Modeling Mamala Bay outfall plumes. II: Far-field. J. Hydraul. Eng., 125, 574583.

  • Rogowski, P. E., , E. Terrill, , M. Otero, , L. Hazard, , and W. Middleton, 2012: Mapping ocean outfall plumes and their mixing using autonomous underwater vehicles. J. Geophys. Res., 117, C07016, doi:10.1029/2011JC007804.

    • Search Google Scholar
    • Export Citation
  • Ross, O. N., , and J. Sharples, 2004: Recipe for 1-D Lagrangian particle tracking models in space-varying diffusivity. Limnol. Oceanogr. Methods, 2, 289302.

    • Search Google Scholar
    • Export Citation
  • Saffman, P. G., 1962: The effect of wind shear on horizontal spread from an instantaneous ground source. Quart. J. Roy. Meteor. Soc., 88, 382393.

    • Search Google Scholar
    • Export Citation
  • Sawford, B., 2001: Turbulent relative dispersion. Annu. Rev. Fluid Mech., 33, 289317.

  • Smith, R., 1982: Dispersion of tracers in the deep ocean. J. Fluid Mech., 123, 131142.

  • Stacey, M. T., , E. A. Cowen, , T. M. Powell, , E. Dobbins, , S. G. Monismith, , and J. R. Koseff, 2000: Plume dispersion in a stratified, near-coastal flow: Measurements and modeling. Cont. Shelf Res., 20, 637663.

    • Search Google Scholar
    • Export Citation
  • Steinbuck, J. V., , M. T. Stacey, , and S. G. Monismith, 2009: An evaluation of estimation techniques: Implications for Batchelor fitting and . J. Atmos. Oceanic Technol., 26, 16521662.

    • Search Google Scholar
    • Export Citation
  • Steinbuck, J. V., , J. R. Koseff, , A. Genin, , M. T. Stacey, , and S. G. Monismith, 2011: Horizontal dispersion of ocean tracers in internal wave shear. J. Geophys. Res., 116, C11031, doi:10.1029/2011JC007213.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., 1949: Horizontal diffusion due to oceanic turbulence. J. Mar. Res., 8, 199225.

  • Sundermeyer, M. A., , and J. R. Ledwell, 2001: Lateral dispersion over the continental shelf: Analysis of dye release experiments. J. Geophys. Res., 106 (C5), 96039621.

    • Search Google Scholar
    • Export Citation
  • Taylor, G. I., 1921: Diffusion by continuous movements. Proc. London Math. Soc., A20, 196212.

  • Taylor, G. I., 1953: Dispersion of solute matter in solvent flowing slowly through a tube. Proc. Roy. Soc. London, A219, 186203.

  • Townsend, A. A., 1951: The diffusion of heat spots in isotropic turbulence. Proc. Roy. Soc. London, A209, 418430.

  • Vasholz, D. P., , and L. J. Crawford, 1985: Dye dispersion in the seasonal thermocline. J. Phys. Oceanogr., 15, 695712.

  • Visser, A. W., 1997: Using random walk models to simulate the vertical distribution of particles in a turbulent water column. Mar. Ecol. Prog. Ser., 158, 275281.

    • Search Google Scholar
    • Export Citation
  • Walter, R. K., , C. B. Woodson, , R. S. Arthur, , O. B. Fringer, , and S. G. Monismith, 2012: Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res., 117, C07017, doi:10.1029/2012JC008115.

    • Search Google Scholar
    • Export Citation
  • Woodson, C. B., and et al. , 2007: Local diurnal upwelling driven by sea breezes in northern Monterey Bay. Cont. Shelf Res., 27, 22892302.

    • Search Google Scholar
    • Export Citation
  • Woodson, C. B., and et al. , 2011: Observations of internal wave packets propagating along-shelf in northern Monterey Bay. Geophys. Res. Lett., 38, L01605, doi:10.1029/2010GL045453.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., , and P. B. Rhines, 1982: Shear-flow dispersion, internal waves, and horizontal mixing in the ocean. J. Phys. Oceanogr., 12, 515527.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 44 44 1
PDF Downloads 28 28 2

Scale-Dependent Dispersion within the Stratified Interior on the Shelf of Northern Monterey Bay

View More View Less
  • 1 Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, California
  • | 2 COBIA Lab, College of Engineering, The University of Georgia, Athens, Georgia
  • | 3 Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California
  • | 4 Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Stanford, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Autonomous underwater vehicle measurements are used to quantify lateral dispersion of a continuously released Rhodamine WT dye plume within the stratified interior of shelf waters in northern Monterey Bay, California. The along-shelf evolution of the plume’s cross-shelf (lateral) width provides evidence for scale-dependent dispersion following the 4/3 law, as previously observed in both surface and bottom layers. The lateral dispersion coefficient is observed to grow to 0.5 m2 s−1 at a distance of 700 m downstream of the dye source. The role of shear and associated intermittent turbulent mixing within the stratified interior is investigated as a driving mechanism for lateral dispersion. Using measurements of time-varying temperature and horizontal velocities, both an analytical shear-flow dispersion model and a particle-tracking model generate estimates of the lateral dispersion that agree with the field-measured 4/3 law of dispersion, without explicit appeal to any assumed turbulence structure.

Corresponding author address: Ryan J. Moniz, Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Y2E2 473 Via Ortega, Stanford, CA 94305. E-mail: rjmoniz@stanford.edu

Abstract

Autonomous underwater vehicle measurements are used to quantify lateral dispersion of a continuously released Rhodamine WT dye plume within the stratified interior of shelf waters in northern Monterey Bay, California. The along-shelf evolution of the plume’s cross-shelf (lateral) width provides evidence for scale-dependent dispersion following the 4/3 law, as previously observed in both surface and bottom layers. The lateral dispersion coefficient is observed to grow to 0.5 m2 s−1 at a distance of 700 m downstream of the dye source. The role of shear and associated intermittent turbulent mixing within the stratified interior is investigated as a driving mechanism for lateral dispersion. Using measurements of time-varying temperature and horizontal velocities, both an analytical shear-flow dispersion model and a particle-tracking model generate estimates of the lateral dispersion that agree with the field-measured 4/3 law of dispersion, without explicit appeal to any assumed turbulence structure.

Corresponding author address: Ryan J. Moniz, Environmental Fluid Mechanics Laboratory, Department of Civil and Environmental Engineering, Stanford University, Y2E2 473 Via Ortega, Stanford, CA 94305. E-mail: rjmoniz@stanford.edu
Save