• Andreas, E. L, 2009: A new value of the von Kármán constant: Implications and implementation. J. Appl. Meteor. Climatol., 48, 923944, doi:10.1175/2008JAMC1951.1.

    • Search Google Scholar
    • Export Citation
  • Babanin, A. V., , M. L. Banner, , I. R. Young, , and M. A. Donelan, 2007: Wave-follower field measurements of the wind-input spectral function. Part III: Parameterization of the wind-input enhancement due to wave breaking. J. Phys. Oceanogr., 37, 27642775, doi:10.1175/2007JPO3757.1.

    • Search Google Scholar
    • Export Citation
  • Banner, M., , and R. P. Morison, 2010: Refined source terms in wind wave models with explicit wave breaking prediction. Part I: Model framework and validation against field data. Ocean Modell., 33, 177189, doi:10.1016/j.ocemod.2010.01.002.

    • Search Google Scholar
    • Export Citation
  • Banner, M., , A. V. Babanin, , and I. R. Young, 2000: Breaking probability for dominant waves on the sea surface. J. Phys. Oceanogr., 30, 31453160, doi:10.1175/1520-0485(2000)030<3145:BPFDWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banner, M., , J. R. Gemmrich, , and D. M. Farmer, 2002: Multiscale measurements of ocean wave breaking probability. J. Phys. Oceanogr., 32, 33643375, doi:10.1175/1520-0485(2002)032<3364:MMOOWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., , C. W. Fairall, , S. A. Michelson, , and L. Bianco, 2011: Parameterizations of sea-spray impact on the air–sea momentum and heat fluxes. Mon. Wea. Rev., 139, 37813797, doi:10.1175/MWR-D-11-00007.1.

    • Search Google Scholar
    • Export Citation
  • Barenblatt, G. I., , A. J. Chorin, , and V. M. Prostokishin, 2005: A note concerning the Lighthill “sandwich model” of tropical cyclones. Proc. Natl. Acad. Sci. USA, 102, 11 14811 150, doi:10.1073/pnas.0505209102.

    • Search Google Scholar
    • Export Citation
  • Belcher, S. E., 1999: Wave growth by non-separated sheltering. Eur. J. Mech., 18B, 447462, doi:10.1016/S0997-7546(99)80041-7.

  • Bell, M. M., , M. T. Montgomery, , and K. A. Emanuel, 2012: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 31973222, doi:10.1175/JAS-D-11-0276.1.

    • Search Google Scholar
    • Export Citation
  • Bianco, L., , J.-W. Bao, , C. W. Fairall, , and S. A. Michelson, 2011: Impact of sea-spray on the atmospheric surface layer. Bound.-Layer Meteor., 140, 361381, doi:10.1007/s10546-011-9617-1.

    • Search Google Scholar
    • Export Citation
  • Britter, R. E., , and S. R. Hanna, 2003: Flow and dispersion in urban areas. Annu. Rev. Fluid Mech., 35, 469496, doi:10.1146/annurev.fluid.35.101101.161147.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown, , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett.,31, L18306, doi:10.1029/2004GL019460.

  • Gemmrich, J. R., , M. L. Banner, , and C. Garrett, 2008: Spectrally resolved energy dissipation rate and momentum flux of breaking waves. J. Phys. Oceanogr., 38, 12961312, doi:10.1175/2007JPO3762.1.

    • Search Google Scholar
    • Export Citation
  • Hara, T., , and S. S. Belcher, 2004: Wind profile and drag coefficient over mature ocean surface wave spectra. J. Phys. Oceanogr., 34, 23452358, doi:10.1175/JPO2633.1.

    • Search Google Scholar
    • Export Citation
  • Holthuijsen, L. H., , M. D. Powell, , and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res.,117, C09003, doi:10.1029/2012JC007983.

  • Ikeda, T., , and P. A. Durbin, 2007: Direct simulations of a rough-wall channel flow. J. Fluid Mech., 571, 235263, doi:10.1017/S002211200600334X.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., , and W. K. Melville, 2010: Observations of wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr., 40, 25752604, doi:10.1175/2010JPO4383.1.

    • Search Google Scholar
    • Export Citation
  • Kleiss, J. M., , and W. K. Melville, 2011: The analysis of sea surface imagery for whitecap kinematics. J. Atmos. Oceanic Technol., 28, 219243, doi:10.1175/2010JTECHO744.1.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., , and V. K. Makin, 2001: The impact of air-flow separation on the drag of the sea surface. Bound.-Layer Meteor., 98, 155171, doi:10.1023/A:1018719917275.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., , and V. K. Makin, 2007: Aerodynamic roughness of the sea surface at high winds. Bound.-Layer Meteor., 125, 289303, doi:10.1007/s10546-007-9184-7.

    • Search Google Scholar
    • Export Citation
  • Kudryavtsev, V. N., , and V. K. Makin, 2011: Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Bound.-Layer Meteor., 140, 383410, doi:10.1007/s10546-011-9624-2.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., , and T. Hara, 2008a: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part I: Mature seas. J. Phys. Oceanogr., 38, 21452163, doi:10.1175/2008JPO3961.1.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., , and T. Hara, 2008b: The effect of breaking waves on a coupled model of wind and ocean surface waves. Part II: Growing seas. J. Phys. Oceanogr., 38, 21642184, doi:10.1175/2008JPO3962.1.

    • Search Google Scholar
    • Export Citation
  • Kukulka, T., , T. Hara, , and S. E. Belcher, 2007: A model of the air–sea momentum flux and breaking-wave distribution for strongly forced wind waves. J. Phys. Oceanogr., 37, 18111828, doi:10.1175/JPO3084.1.

    • Search Google Scholar
    • Export Citation
  • Lee, S.-H., , and H. J. Sung, 2007: Direct numerical simulation of the turbulent boundary layer over a rod-roughened wall. J. Fluid Mech., 584, 125146, doi:10.1017/S0022112007006465.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., 2005: A note on the drag of the sea surface at hurricane winds. Bound.-Layer Meteor., 115, 169176, doi:10.1007/s10546-004-3647-x.

    • Search Google Scholar
    • Export Citation
  • Makin, V. K., , and V. N. Kudryavtsev, 2002: Impact of dominant waves on sea drag. Bound.-Layer Meteor., 103, 8399, doi:10.1023/A:1014591222717.

    • Search Google Scholar
    • Export Citation
  • Melville, W. K., , and P. Matusov, 2002: Distribution of breaking waves at the ocean surface. Nature, 417, 5863, doi:10.1038/417058a.

  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mueller, J. A., , and F. Veron, 2009: Nonlinear formulation of the bulk surface stress over breaking waves: Feedback mechanisms from air-flow separation. Bound.-Layer Meteor., 130, 117134, doi:10.1007/s10546-008-9334-6.

    • Search Google Scholar
    • Export Citation
  • Perlin, M., , W. Choi, , and Z. Tian, 2013: Breaking waves in deep and intermediate waters. Annu. Rev. Fluid Mech., 45, 115145, doi:10.1146/annurev-fluid-011212-140721.

    • Search Google Scholar
    • Export Citation
  • Petersen, G. N., , and I. A. Renfrew, 2009: Aircraft-based observations of air–sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Quart. J. Roy. Meteor. Soc., 135, 20302045, doi:10.1002/qj.355.

    • Search Google Scholar
    • Export Citation
  • Phillips, O., 1985: Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech., 156, 505531, doi:10.1017/S0022112085002221.

    • Search Google Scholar
    • Export Citation
  • Piomelli, U., 2008: Wall-layer models for large-eddy simulations. Prog. Aerosp. Sci., 44, 437446, doi:10.1016/j.paerosci.2008.06.001.

    • Search Google Scholar
    • Export Citation
  • Pope, S. B., 2000: Turbulent Flows. Cambridge University Press, 771 pp.

  • Powell, M. D., , P. J. Vickery, , and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Reul, N., , H. Branger, , and J. P. Giovanangeli, 2008: Air flow structure over short-gravity breaking water waves. Bound.-Layer Meteor., 126, 477505, doi:10.1007/s10546-007-9240-3.

    • Search Google Scholar
    • Export Citation
  • Soloviev, A., , and R. Lukas, 2010: Effects of bubbles and sea spray on air–sea exchange in hurricane conditions. Bound.-Layer Meteor., 136, 365376, doi:10.1007/s10546-010-9505-0.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and C.-H. Moeng, 1994: A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Bound.-Layer Meteor., 71, 247276, doi:10.1007/BF00713741.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and C.-H. Moeng, 2000: Simulation of turbulent flow over idealized water waves. J. Fluid Mech., 404, 4785, doi:10.1017/S0022112099006965.

    • Search Google Scholar
    • Export Citation
  • Sullivan, P. P., , J. C. McWilliams, , and W. K. Melville, 2007: Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech., 593, 405452, doi:10.1017/S002211200700897X.

    • Search Google Scholar
    • Export Citation
  • Suzuki, N., , T. Hara, , and P. P. Sullivan, 2011: Turbulent airflow at young sea states with frequent wave breaking events: Large-eddy simulation. J. Atmos. Sci., 68, 12901305, doi:10.1175/2011JAS3619.1.

    • Search Google Scholar
    • Export Citation
  • Suzuki, N., , T. Hara, , and P. P. Sullivan, 2013: Impact of breaking wave form drag on near-surface turbulence and drag coefficient over young seas at high winds. J. Phys. Oceanogr., 43, 324343, doi:10.1175/JPO-D-12-0127.1.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., , D. Wadhera, , M. D. Powell, , and Y. Chen, 2009: A hurricane boundary layer and wind field model for use in engineering applications. J. Appl. Meteor. Climatol., 48, 381405, doi:10.1175/2008JAMC1841.1.

    • Search Google Scholar
    • Export Citation
  • Young, I. R., 2003: A review of the sea state generated by hurricanes. Mar. Struct., 16, 201218, doi:10.1016/S0951-8339(02)00054-0.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 38 38 0
PDF Downloads 39 39 3

Impact of Dominant Breaking Waves on Air–Sea Momentum Exchange and Boundary Layer Turbulence at High Winds

View More View Less
  • 1 Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Large-eddy simulation (LES) is used to investigate how dominant breaking waves in the ocean under hurricane-force winds affect the drag and near-surface airflow turbulence. The LES explicitly resolves the wake turbulence produced by dominant-scale breakers. Effects of unresolved roughness such as short breakers, nonbreaking waves, and sea foam are modeled as the subgrid-scale drag. Compared to the laboratory conditions previously studied using the same method, dominant-scale breakers in open-ocean conditions are less frequent, and the subgrid-scale drag is more significant. Nevertheless, dominant-scale breakers are more fully exposed to high winds and produce more intense wakes individually. As a result, they support a large portion of the total drag and significantly influence the turbulence for many ocean conditions that are likely to occur. The intense wake turbulence is characterized by flow separation, upward bursts of wind, and upward flux of the turbulent kinetic energy (TKE), all of which may influence sea spray dispersion. Similarly to the findings in the laboratory conditions, high production of wake turbulence shortcuts the inertial energy cascade, causes high TKE dissipation, and contributes to the reduction of the drag coefficient. The results also indicate that if the drag coefficient decreases with increasing wind at very high winds, as some recent observations suggest, then the unresolved roughness must also decrease.

Current affiliation: Brown University, Providence, Rhode Island.

Corresponding author address: Nobuhiro Suzuki, Brown University, 324 Brook St., Providence, RI 02912. E-mail: nobuhiro_suzuki@brown.edu

Abstract

Large-eddy simulation (LES) is used to investigate how dominant breaking waves in the ocean under hurricane-force winds affect the drag and near-surface airflow turbulence. The LES explicitly resolves the wake turbulence produced by dominant-scale breakers. Effects of unresolved roughness such as short breakers, nonbreaking waves, and sea foam are modeled as the subgrid-scale drag. Compared to the laboratory conditions previously studied using the same method, dominant-scale breakers in open-ocean conditions are less frequent, and the subgrid-scale drag is more significant. Nevertheless, dominant-scale breakers are more fully exposed to high winds and produce more intense wakes individually. As a result, they support a large portion of the total drag and significantly influence the turbulence for many ocean conditions that are likely to occur. The intense wake turbulence is characterized by flow separation, upward bursts of wind, and upward flux of the turbulent kinetic energy (TKE), all of which may influence sea spray dispersion. Similarly to the findings in the laboratory conditions, high production of wake turbulence shortcuts the inertial energy cascade, causes high TKE dissipation, and contributes to the reduction of the drag coefficient. The results also indicate that if the drag coefficient decreases with increasing wind at very high winds, as some recent observations suggest, then the unresolved roughness must also decrease.

Current affiliation: Brown University, Providence, Rhode Island.

Corresponding author address: Nobuhiro Suzuki, Brown University, 324 Brook St., Providence, RI 02912. E-mail: nobuhiro_suzuki@brown.edu
Save