• Allison, L. C., , H. L. Johnson, , D. P. Marshall, , and D. R. Munday, 2010: Where do winds drive the Antarctic Circumpolar Current? Geophys. Res. Lett.,37, L12605, doi:10.1029/2010GL043355.

  • Boccaletti, G., , R. Ferrari, , A. Adcroft, , D. Ferreira, , and J. Marshall, 2005: The vertical structure of ocean heat transport. Geophys. Res. Lett., 32, L10603, doi:10.1029/2005GL022474.

    • Search Google Scholar
    • Export Citation
  • Bryan, F., 1986: High-latitude salinity effects and interhemispheric thermohaline circulations. Nature, 323, 301304, doi:10.1038/323301a0.

    • Search Google Scholar
    • Export Citation
  • Bryden, H. L., , and S. Imawaki, 2001: Ocean heat transport. Ocean Circulation and Climate, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 455–474.

  • Cessi, P., , and W. R. Young, 1992: Multiple equilibria in two-dimensional thermohaline circulation. J. Fluid Mech., 241, 291309, doi:10.1017/S0022112092002040.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., , and C. L. Wolfe, 2009: Eddy-driven buoyancy gradients on eastern boundaries and their role in the thermocline. J. Phys. Oceanogr., 39, 15951614, doi:10.1175/2009JPO4063.1.

    • Search Google Scholar
    • Export Citation
  • Cessi, P., , C. L. Wolfe, , and B. C. Ludka, 2010: Eastern-boundary contribution to the residual and meridional overturning circulations. J. Phys. Oceanogr., 40, 20752090, doi:10.1175/2010JPO4426.1.

    • Search Google Scholar
    • Export Citation
  • Danabasoglu, G., , and J. C. McWilliams, 1995: Sensitivity of the global ocean circulation to parameterizations of mesoscale tracer transports. J. Climate, 8, 29672987, doi:10.1175/1520-0442(1995)008<2967:SOTGOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fasullo, J. T., , and K. E. Trenberth, 2008: The annual cycle of the energy budget. Part II: Meridional structures and poleward transports. J. Climate, 21, 23132325, doi:10.1175/2007JCLI1936.1.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech., 41, 253282, doi:10.1146/annurev.fluid.40.111406.102139.

    • Search Google Scholar
    • Export Citation
  • Ferrari, R., , S. M. Griffies, , A. J. G. Nurser, , and G. K. Vallis, 2010: A boundary-value problem for the parameterized mesoscale eddy transport. Ocean Modell., 32, 143156, doi:10.1016/j.ocemod.2010.01.004.

    • Search Google Scholar
    • Export Citation
  • Garabato, A. C. N., , K. L. Polzin, , B. A. King, , K. J. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Gent, P. R., , and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150155, doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gnanadesikan, A., 1999: A simple predictive model for the structure of the oceanic pycnocline. Science, 283, 20772079, doi:10.1126/science.283.5410.2077.

    • Search Google Scholar
    • Export Citation
  • Gordon, A. L., 1986: Interocean exchange of thermocline water. J. Geophys. Res., 91 (C4), 50375046, doi:10.1029/JC091iC04p05037.

  • Griesel, A., , and M. A. M. Maqueda, 2006: The relation of meridional pressure gradients to North Atlantic Deep Water volume transport in an ocean general circulation model. Climate Dyn., 26, 781799, doi:10.1007/s00382-006-0122-z.

    • Search Google Scholar
    • Export Citation
  • Haney, R. L., 1971: Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1, 241248, doi:10.1175/1520-0485(1971)001<0241:STBCFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knorr, G., , and G. Lohmann, 2003: Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature, 424, 532536, doi:10.1038/nature01855.

    • Search Google Scholar
    • Export Citation
  • Kuhlbrodt, T., , A. Griesel, , M. Montoya, , A. Levermann, , M. Hofmann, , and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi:10.1029/2004RG000166.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Marotzke, J., 2000: Abrupt climate change and thermohaline circulation: Mechanisms and predictability. Proc. Natl. Acad. Sci. USA, 97, 13471350, doi:10.1073/pnas.97.4.1347.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , and K. Speer, 2012: Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci., 5, 171180, doi:10.1038/ngeo1391.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997a: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102 (C3), 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , C. Hill, , L. Perelman, , and A. Adcroft, 1997b: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102 (C3), 57335752, doi:10.1029/96JC02776.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1966: Abyssal recipes. Deep-Sea Res. Oceanogr. Abstr., 13, 707730, doi:10.1016/0011-7471(66)90602-4.

  • Munk, W., , and C. Wunsch, 1998: Abyssal recipes II: Energetics of tidal and wind mixing. Deep-Sea Res. I, 45, 19772010, doi:10.1016/S0967-0637(98)00070-3.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and G. Vallis, 2012: A theory of the interhemispheric meridional overturning circulation and associated stratification. J. Phys. Oceanogr., 42, 16521667, doi:10.1175/JPO-D-11-0189.1.

    • Search Google Scholar
    • Export Citation
  • Prather, M. J., 1986: Numerical advection by conservation of second-order moments. J. Geophys. Res., 91 (D6), 66716681, doi:10.1029/JD091iD06p06671.

    • Search Google Scholar
    • Export Citation
  • Radko, T., , and I. Kamenkovich, 2011: Semi-adiabatic model of the deep stratification and meridional overturning. J. Phys. Oceanogr., 41, 757780, doi:10.1175/2010JPO4538.1.

    • Search Google Scholar
    • Export Citation
  • Radko, T., , I. V. Kamenkovich, , and P.-Y. Dare, 2008: Inferring the pattern of the oceanic meridional transport from the air–sea density flux. J. Phys. Oceanogr., 38, 27222738, doi:10.1175/2008JPO3748.1.

    • Search Google Scholar
    • Export Citation
  • Rahmstorf, S., 1996: On the freshwater forcing and transport of the Atlantic thermohaline circulation. Climate Dyn., 12, 799811, doi:10.1007/s003820050144.

    • Search Google Scholar
    • Export Citation
  • Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12, 11541158, doi:10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rintoul, S. R., 1991: South Atlantic interbasin exchange. J. Geophys. Res., 96 (C2), 26752692, doi:10.1029/90JC02422.

  • Robinson, A., , and H. Stommel, 1959: The oceanic thermocline and the associated thermohaline circulation. Tellus, 11, 295308, doi: 10.1111/j.2153-3490.1959.tb00035.x.

    • Search Google Scholar
    • Export Citation
  • Roemmich, D., , and C. Wunsch, 1985: Two transatlantic sections: Meridional circulation and heat flux in the subtropical North Atlantic Ocean. Deep-Sea Res.,32A, 619–664, doi:10.1016/0198-0149(85)90070-6.

  • Rooth, C., 1982: Hydrology and ocean circulation. Prog. Oceanogr., 11, 131149, doi:10.1016/0079-6611(82)90006-4.

  • Stommel, H., 1961: Thermohaline convection with two stable regimes of flow. Tellus, 13, 224230, doi:10.1111/j.2153-3490.1961.tb00079.x.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., , and A. B. Arons, 1959a: On the abyssal circulation of the world ocean—I. Stationary planetary flow patterns on a sphere. Deep-Sea Res., 6, 140154, doi:10.1016/0146-6313(59)90065-6.

    • Search Google Scholar
    • Export Citation
  • Stommel, H., , and A. B. Arons, 1959b: On the abyssal circulation of the world ocean—II. An idealized model of the circulation pattern and amplitude in oceanic basins. Deep-Sea Res., 6, 217218, doi:10.1016/0146-6313(59)90075-9.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. Samuels, 1995: Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. I, 42, 477500, doi:10.1016/0967-0637(95)00012-U.

    • Search Google Scholar
    • Export Citation
  • Toggweiler, J. R., , and B. Samuels, 1998: On the ocean’s large-scale circulation near the limit of no vertical mixing. J. Phys. Oceanogr., 28, 18321852, doi:10.1175/1520-0485(1998)028<1832:OTOSLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., , and J. T. Fasullo, 2008: An observational estimate of inferred ocean energy divergence. J. Phys. Oceanogr., 38, 984999, doi:10.1175/2007JPO3833.1.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., 2000: Large-scale circulation and production of stratification: Effects of wind, geometry, and diffusion. J. Phys. Oceanogr., 30, 933954, doi:10.1175/1520-0485(2000)030<0933:LSCAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weaver, A. J., , O. A. Saenko, , P. U. Clark, , and J. X. Mitrovica, 2003: Meltwater pulse 1A from Antarctica as a trigger of the Bølling–Allerød warm interval. Science, 299, 17091713, doi:10.1126/science.1081002.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2009: Overturning in an eddy-resolving model: The effect of the pole-to-pole temperature gradient. J. Phys. Oceanogr., 39, 125142, doi:10.1175/2008JPO3991.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2010: What sets the strength of the mid-depth stratification and overturning circulation in eddying ocean models? J. Phys. Oceanogr., 40, 15201538, doi:10.1175/2010JPO4393.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , and P. Cessi, 2011: The adiabatic pole-to-pole overturning circulation. J. Phys. Oceanogr., 41, 17951810, doi:10.1175/2011JPO4570.1.

    • Search Google Scholar
    • Export Citation
  • Wolfe, C. L., , P. Cessi, , J. L. McClean, , and M. E. Maltrud, 2008: Vertical heat transport in eddying ocean models. Geophys. Res. Lett.,35, L23605, doi:10.1029/2008GL036138.

  • Wunsch, C., 1998: The work done by the wind on the oceanic general circulation. J. Phys. Oceanogr., 28, 23322340, doi:10.1175/1520-0485(1998)028<2332:TWDBTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Young, W. R., 2012: An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr., 42, 692707, doi:10.1175/JPO-D-11-0102.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 6
PDF Downloads 58 58 7

Salt Feedback in the Adiabatic Overturning Circulation

View More View Less
  • 1 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The adiabatic overturning circulation is the part of the meridional overturning circulation that persists in the limit of vanishing diffusivity. Two conditions are required for the existence of the adiabatic overturning circulation: a high-latitude zonally reentrant channel subject to surface westerlies and a set of outcropping isopycnals shared between the channel and the opposite hemisphere. This paper examines how different buoyancy forcing regimes, particularly freshwater flux, affect the surface buoyancy distribution and the strength of the adiabatic overturning circulation. Without freshwater forcing, salinity is uniform and buoyancy is determined by temperature only. In this case, the size of the shared isopycnal window is effectively fixed by the coupling between atmospheric and sea surface temperatures. With freshwater forcing (applied as a surface flux), the salinity, and thus the sea surface buoyancy and the size of the shared isopycnal window, is not specified by the atmospheric state alone. It is found that a salt–advection feedback leads to surface buoyancy distributions that increase the size of the isopycnal window and strengthen the adiabatic overturning circulation. The strength of the feedback is controlled by processes in high latitudes—the southern channel, where the surface salinity is determined by a balance between freshwater input from the atmosphere, salt input from upwelling deep water, and freshwater export by Ekman transport; and the Northern Hemisphere, where the overturning and wind-driven transport in the thermocline advect salty water from the subtropics, mitigating the freshening effect of the surface freshwater flux. The freshwater budget in the channel region provides an estimate of the size of the isopycnal window.

Current affiliation: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York.

Corresponding author address: Christopher L. Wolfe, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000. E-mail: christopher.wolfe@stonybrook.edu

Abstract

The adiabatic overturning circulation is the part of the meridional overturning circulation that persists in the limit of vanishing diffusivity. Two conditions are required for the existence of the adiabatic overturning circulation: a high-latitude zonally reentrant channel subject to surface westerlies and a set of outcropping isopycnals shared between the channel and the opposite hemisphere. This paper examines how different buoyancy forcing regimes, particularly freshwater flux, affect the surface buoyancy distribution and the strength of the adiabatic overturning circulation. Without freshwater forcing, salinity is uniform and buoyancy is determined by temperature only. In this case, the size of the shared isopycnal window is effectively fixed by the coupling between atmospheric and sea surface temperatures. With freshwater forcing (applied as a surface flux), the salinity, and thus the sea surface buoyancy and the size of the shared isopycnal window, is not specified by the atmospheric state alone. It is found that a salt–advection feedback leads to surface buoyancy distributions that increase the size of the isopycnal window and strengthen the adiabatic overturning circulation. The strength of the feedback is controlled by processes in high latitudes—the southern channel, where the surface salinity is determined by a balance between freshwater input from the atmosphere, salt input from upwelling deep water, and freshwater export by Ekman transport; and the Northern Hemisphere, where the overturning and wind-driven transport in the thermocline advect salty water from the subtropics, mitigating the freshening effect of the surface freshwater flux. The freshwater budget in the channel region provides an estimate of the size of the isopycnal window.

Current affiliation: School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York.

Corresponding author address: Christopher L. Wolfe, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000. E-mail: christopher.wolfe@stonybrook.edu
Save