• Alford, M., , R.-C. Lien, , H. Simmons, , J. Klymak, , S. Ramp, , Y. J. Tang, , D. Tang, , and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355, doi:10.1175/2010JPO4388.1.

    • Search Google Scholar
    • Export Citation
  • Alias, A., , R. H. J. Grimshaw, , and K. R. Khusnutdinova, 2013: On strongly interacting internal waves in a rotating ocean and coupled Ostrovsky equations. Chaos, 23, 023121, doi:10.1063/1.4808249.

    • Search Google Scholar
    • Export Citation
  • Amante, C., , and B. W. Eakins, 2009: ETOPO1 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Tech. Memo. NESDIS NGDC-24, 25 pp.

  • Boyer, T., and et al. , 2006: World Ocean Database 2005. S. Levitus, Ed., NOAA Atlas NESDIS 60, 182 pp.

  • Farmer, D., , Q. Li, , and J.-H. Park, 2009: Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmos.–Ocean, 47, 267280, doi:10.3137/OC313.2009.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., 1996: A unified model for the generation and fission of internal tides in a rotating ocean. J. Mar. Res., 54, 421450, doi:10.1357/0022240963213574.

    • Search Google Scholar
    • Export Citation
  • Gerkema, T., , and J. T. F. Zimmerman, 1995: Generation of nonlinear internal tides and solitary waves. J. Phys. Oceanogr., 25, 10811094, doi:10.1175/1520-0485(1995)025<1081:GONITA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., 1981: Evolution equations for long nonlinear internal waves in stratified shear flows. Stud. Appl. Math., 65, 159188.

  • Grimshaw, R., 1985: Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math., 73, 133.

  • Grimshaw, R., 2001: Internal solitary waves. Environmental Stratified Flows, R. Grimshaw, Ed., Kluwer, 1–27.

  • Grimshaw, R., 2013: Models for nonlinear long internal waves in a rotating fluid. Fundam. Appl. Hydrophys., 6, 413.

  • Grimshaw, R., , and H. Mitsudera, 1993: Slowly-varying solitary wave solutions of the perturbed Korteweg–de Vries equation revisited. Stud. Appl. Math., 90, 7586.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., , and K. R. Helfrich, 2008: Long-time solutions of the Ostrovsky equation. Stud. Appl. Math., 121, 7188, doi:10.1111/j.1467-9590.2008.00412.x.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R., , and K. R. Helfrich, 2012: The effect of rotation on internal solitary waves. IMA J. Appl. Math., 77, 326339, doi:10.1093/imamat/hxs024.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , J.-M. He, , and L. A. Ostrovsky, 1998a: Terminal damping of a solitary wave due to radiation in rotational systems. Stud. Appl. Math., 101, 197210, doi:10.1111/1467-9590.00090.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , L. A. Ostrovsky, , V. I. Shrira, , and Y. A. Stepanyants, 1998b: Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Geophys., 19, 289338, doi:10.1023/A:1006587919935.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , D. Pelinovsky, , E. Pelinovsky, , and T. Talipova, 2001: Wave group dynamics in weakly nonlinear long-wave models. Physica D, 159, 3557, doi:10.1016/S0167-2789(01)00333-5.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , E. Pelinovsky, , T. Talipova, , and A. Kurkin, 2004: Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr., 34, 27742791, doi:10.1175/JPO2652.1.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , E. Pelinovsky, , T. Talipova, , and A. Kurkin, 2010: Internal solitary waves: Propagation, deformation and disintegration. Nonlinear Processes Geophys., 17, 633649, doi:10.5194/npg-17-633-2010.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , K. Helfrich, , and E. Johnson, 2012: The reduced Ostrovsky equation: Integrability and breaking. Stud. Appl. Math., 129, 414436, doi:10.1111/j.1467-9590.2012.00560.x.

    • Search Google Scholar
    • Export Citation
  • Grimshaw, R. H. J., , K. Helfrich, , and E. Johnson, 2013: Experimental study of the effect of rotation on nonlinear internal waves. Phys. Fluids, 25, 056602, doi:10.1063/1.4805092.

    • Search Google Scholar
    • Export Citation
  • Helfrich, K. R., 2007: Decay and return of internal solitary waves with rotation. Phys. Fluids.,19, 026601, doi:10.1063/1.2472509.

  • Helfrich, K. R., , and W. K. Melville, 2006: Long nonlinear internal waves. Annu. Rev. Fluid Mech., 38, 395425, doi:10.1146/annurev.fluid.38.050304.092129.

    • Search Google Scholar
    • Export Citation
  • Holloway, P., , E. Pelinovsky, , and T. Talipova, 1999: A generalized Korteweg–de Vries model of internal tide transformation in the coastal ocean. J. Geophys. Res., 104 (C8), 18 33318 350, doi:10.1029/1999JC900144.

    • Search Google Scholar
    • Export Citation
  • Holloway, P., , E. Pelinovsky, , and T. Talipova, 2001: Internal tide transformation and oceanic internal solitary waves. Environmental Stratified Flows, R. Grimshaw, Ed., Kluwer, 31–60.

  • Jackson, C., 2004: An atlas of internal solitary-like waves and their properties. 2nd ed. Global Ocean Associates Tech. Rep., 559 pp. [Available online at http://www.internalwaveatlas.com/Atlas2_index.html.]

  • Johnson, R. S., 1973: On the development of a solitary wave moving over an uneven bottom. Proc. Camb. Philos. Soc., 73, 183203, doi:10.1017/S0305004100047605.

    • Search Google Scholar
    • Export Citation
  • Leith, C. E., 1996: Stochastic models of chaotic systems. Physica D, 98, 481491, doi:10.1016/0167-2789(96)00107-8.

  • Li, Q., , and D. M. Farmer, 2011: The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. J. Phys. Oceanogr., 41, 13451363, doi:10.1175/2011JPO4587.1.

    • Search Google Scholar
    • Export Citation
  • Marshall, J., , A. Adcroft, , C. Hill, , L. Perelman, , and C. Heisey, 1997: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 57535766, doi:10.1029/96JC02775.

    • Search Google Scholar
    • Export Citation
  • Obregon, M. A., , and Y. A. Stepanyants, 1998: Oblique magneto-acoustic solitons in rotating plasma. Phys. Lett., 249A, 315323, doi:10.1016/S0375-9601(98)00735-X.

    • Search Google Scholar
    • Export Citation
  • Ostrovsky, L., 1978: Nonlinear internal waves in a rotating ocean. Oceanology, 18 (2), 119125.

  • Pacanowski, R. C., , and S. G. H. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 14431451, doi:10.1175/1520-0485(1981)011<1443:POVMIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pelinovsky, D., , and R. H. J. Grimshaw, 1997: Structural transformation of eigenvalues for a perturbed algebraic soliton potential. Phys. Lett., 229A, 165172, doi:10.1016/S0375-9601(97)00191-6.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V. I., , and K. Hutter, 2001: Generation of second mode solitary waves by the interaction first mode soliton with sill. Nonlinear Processes Geophys., 8, 223240, doi:10.5194/npg-8-223-2001.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V. I., , and W. Alpers, 2005: Generation of secondary internal waves by the interaction of an internal solitary waves with an underwater bank. J. Geophys. Res., 110, C02019, doi:10.1029/2004JC002467.

    • Search Google Scholar
    • Export Citation
  • Vlasenko, V. I., , N. Stashchuk, , and K. Hutter, 2005: Baroclinic Tides: Theoretical Modelling and Observational Evidence. Cambridge University Press, 351 pp.

  • Zhao, Z., , and M. H. Alford, 2006: Source and propagation of internal solitary waves in the northeastern South China Sea. J. Geophys. Res.,111, C11012, doi:10.1029/2006JC003644.

  • Zhao, Z., , V. Klemas, , Q. Zheng, , and X. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett.,31, L06302, doi:10.1029/2003GL019077.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 131 12
PDF Downloads 92 92 11

Combined Effect of Rotation and Topography on Shoaling Oceanic Internal Solitary Waves

View More View Less
  • 1 Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom
  • | 2 Geophysical Institute, University of Bergen, Bergen, Norway
  • | 3 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 4 School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Internal solitary waves commonly observed in the coastal ocean are often modeled by a nonlinear evolution equation of the Korteweg–de Vries type. Because these waves often propagate for long distances over several inertial periods, the effect of Earth’s background rotation is potentially significant. The relevant extension of the Kortweg–de Vries is then the Ostrovsky equation, which for internal waves does not support a steady solitary wave solution. Recent studies using a combination of asymptotic theory, numerical simulations, and laboratory experiments have shown that the long time effect of rotation is the destruction of the initial internal solitary wave by the radiation of small-amplitude inertia–gravity waves, and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. However, in the ocean, internal solitary waves are often propagating over variable topography, and this alone can cause quite dramatic deformation and transformation of an internal solitary wave. Hence, the combined effects of background rotation and variable topography are examined. Then the Ostrovsky equation is replaced by a variable coefficient Ostrovsky equation whose coefficients depend explicitly on the spatial coordinate. Some numerical simulations of this equation, together with analogous simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm), for a certain cross section of the South China Sea are presented. These demonstrate that the combined effect of shoaling and rotation is to induce a secondary trailing wave packet, induced by enhanced radiation from the leading wave.

Corresponding author address: Karl Helfrich, WHOI, MS 21, Woods Hole, MA 02543. E-mail: khelfrich@whoi.edu

Abstract

Internal solitary waves commonly observed in the coastal ocean are often modeled by a nonlinear evolution equation of the Korteweg–de Vries type. Because these waves often propagate for long distances over several inertial periods, the effect of Earth’s background rotation is potentially significant. The relevant extension of the Kortweg–de Vries is then the Ostrovsky equation, which for internal waves does not support a steady solitary wave solution. Recent studies using a combination of asymptotic theory, numerical simulations, and laboratory experiments have shown that the long time effect of rotation is the destruction of the initial internal solitary wave by the radiation of small-amplitude inertia–gravity waves, and the eventual emergence of a coherent, steadily propagating, nonlinear wave packet. However, in the ocean, internal solitary waves are often propagating over variable topography, and this alone can cause quite dramatic deformation and transformation of an internal solitary wave. Hence, the combined effects of background rotation and variable topography are examined. Then the Ostrovsky equation is replaced by a variable coefficient Ostrovsky equation whose coefficients depend explicitly on the spatial coordinate. Some numerical simulations of this equation, together with analogous simulations using the Massachusetts Institute of Technology General Circulation Model (MITgcm), for a certain cross section of the South China Sea are presented. These demonstrate that the combined effect of shoaling and rotation is to induce a secondary trailing wave packet, induced by enhanced radiation from the leading wave.

Corresponding author address: Karl Helfrich, WHOI, MS 21, Woods Hole, MA 02543. E-mail: khelfrich@whoi.edu
Save