• Bell, T. H., 1975: Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech., 67, 705722, doi:10.1017/S0022112075000560.

    • Search Google Scholar
    • Export Citation
  • Brearley, J. A., , A. C. Naveira Garabato, , K. Sheen, , D. Smeed, , and S. Waterman, 2013: Eddy-induced modulation of turbulent dissipation over rough topography in the Southern Ocean. J. Phys. Oceanogr., 43, 22882308, doi:10.1175/JPO-D-12-0222.1.

    • Search Google Scholar
    • Export Citation
  • Eriksen, C. C., 1985: Implications of ocean bottom reflection for internal wave spectra and mixing. J. Phys. Oceanogr., 15, 11451156, doi:10.1175/1520-0485(1985)015<1145:IOOBRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Firing, E., , and R. Gordon, 1990: Deep ocean acoustic Doppler current profiling. Proc. IEEE Fourth Working Conf. on Current Measurement, Clinton, MD, IEEE, 192201, doi:10.1109/CURM.1990.110905.

  • Fischer, J., , and M. Visbeck, 1993: Deep velocity profiling with self-contained ADCPs. J. Atmos. Oceanic Technol., 10, 764773, doi:10.1175/1520-0426(1993)010<0764:DVPWSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gargett, A. E., 1990: Do we really know how to scale the turbulent kinetic energy dissipation rate ϵ due to breaking of oceanic internal waves? J. Geophys. Res., 95 (C9), 15 97115 974, doi:10.1029/JC095iC09p15971.

    • Search Google Scholar
    • Export Citation
  • Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press, 662 pp.

  • Gregg, M. C., 1989: Scaling turbulent dissipation in the thermocline. J. Geophys. Res., 94 (C7), 96869698, doi:10.1029/JC094iC07p09686.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., , and E. Kunze, 1991: Internal wave shear and strain in Santa Monica Basin. J. Geophys. Res., 96 (C9), 16 70916 719, doi:10.1029/91JC01385.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., , T. B. Sanford, , and D. P. Winkel, 2003: Reduced mixing from the breaking of internal waves in equatorial ocean waters. Nature, 422, 513515, doi:10.1038/nature01507.

    • Search Google Scholar
    • Export Citation
  • Henyey, F. S., 1991: Scaling of internal wave predictions for ϵ. Dynamics of Internal Gravity Waves in the Ocean: Proc. ‘Aha Huliko’a Hawaiian Winter Workshop, Honolulu, HI, University of Hawai’i at Mānoa, 233236.

  • Henyey, F. S., , J. Wright, , and S. Flatte, 1986: Energy and action flow through the internal wave field: An eikonal approach. J. Geophys. Res., 91 (C7), 84878496, doi:10.1029/JC091iC07p08487.

    • Search Google Scholar
    • Export Citation
  • King, B. A., , E. Firing, , and T. M. Joyce, 2001: Shipboard observations during WOCE. Ocean Circulation and Climate: Observing and Modeling the Global Ocean, G. Siedler, J. Church, and J. Gould, Eds., Academic Press, 99–122.

  • Kunze, E., , A. J. Williams III, , and M. G. Briscoe, 1990: Observations of shear and vertical stability from a neutrally buoyant float. J. Geophys. Res., 95 (C10), 18 12718 142, doi:10.1029/JC095iC10p18127.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , L. K. Rosenfeld, , G. S. Carter, , and M. C. Gregg, 2002: Internal waves in Monterey submarine canyon. J. Phys. Oceanogr., 32, 18901913, doi:10.1175/1520-0485(2002)032<1890:IWIMSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunze, E., , E. Firing, , J. M. Hummon, , T. K. Chereskin, , and A. M. Thurnherr, 2006: Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J. Phys. Oceanogr., 36, 15531576, doi:10.1175/JPO2926.1.

    • Search Google Scholar
    • Export Citation
  • Mauritzen, C., , K. L. Polzin, , M. S. McCartney, , R. C. Millard, , and D. E. West-Mack, 2002: Evidence in hydrography and density fine structure for enhanced vertical mixing over the Mid-Atlantic Ridge in the western Atlantic. J. Geophys. Res., 107, 3147, doi:10.1029/2001JC001114.

    • Search Google Scholar
    • Export Citation
  • Muller, P., , and N. Xu, 1992: Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, doi:10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Munk, W., 1981: Internal waves and small-scale process. Evolution of Physical Oceanography, B. A. Warren and C. A. Wunsch, Eds., MIT Press, 264–291.

  • Naveira Garabato, A. C., 2009: RRS James Cook Cruise 29, 01 Nov–22 Dec 2008. SOFine Cruise Rep.: Southern Ocean Finestructure, National Oceanography Centre Southampton Cruise Rep. 35, 216 pp.

  • Naveira Garabato, A. C., , K. Polzin, , B. King, , K. Heywood, , and M. Visbeck, 2004: Widespread intense turbulent mixing in the Southern Ocean. Science, 303, 210213, doi:10.1126/science.1090929.

    • Search Google Scholar
    • Export Citation
  • Naveira Garabato, A. C., , A. J. G. Nurser, , R. B. Scott, , and J. A. Goff, 2013: The impact of small-scale topography on the dynamical balance of the ocean. J. Phys. Oceanogr., 43, 647668, doi:10.1175/JPO-D-12-056.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010a: Radiation and dissipation of internal waves generated by geostrophic motions impinging on small-scale topography: Application to the Southern Ocean. J. Phys. Oceanogr., 40, 20252042, doi:10.1175/2010JPO4315.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2010b: Radiation and dissipation of internal waves generated by geostrophic flows impinging on small-scale topography: Theory. J. Phys. Oceanogr., 40, 10551074, doi:10.1175/2009JPO4199.1.

    • Search Google Scholar
    • Export Citation
  • Nikurashin, M., , and R. Ferrari, 2011: Global energy conversion rate from geostrophic flows into internal lee waves in the deep ocean. Geophys. Res. Lett., 38, L08610, doi:10.1029/2011GL046576.

    • Search Google Scholar
    • Export Citation
  • Oakey, N. S., 1982: Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements. J. Phys. Oceanogr., 12, 256271, doi:10.1175/1520-0485(1982)012<0256:DOTROD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2004: Idealized solutions for the energy balance of the finescale internal wave field. J. Phys. Oceanogr., 34, 231246, doi:10.1175/1520-0485(2004)034<0231:ISFTEB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., 2009: An abyssal recipe. Ocean Modell., 30, 298309, doi:10.1016/j.ocemod.2009.07.006.

  • Polzin, K. L., 2010: Mesoscale eddy–internal wave coupling. Part II: Energetics and results from PolyMode. J. Phys. Oceanogr., 40, 789801, doi:10.1175/2009JPO4039.1.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , and E. T. Montgomery, 1996: Deep microstructure profiling with the High Resolution Profiler. Proc. Microstructure Sensors Workshop, Mt. Hood, OR, Office of Naval Research, 109–115.

  • Polzin, K. L., , and Y. L. Lvov, 2011: Toward regional characterizations of the oceanic internal wavefield. Rev. Geophys., 49, RG4003, doi:10.1029/2010RG000329.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , J. M. Toole, , and R. W. Schmitt, 1995: Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr., 25, 306328, doi:10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , E. Kunze, , J. Hummon, , and E. Firing, 2002: The finescale response of lowered ADCP velocity profiles. J. Atmos. Oceanic Technol., 19, 205223, doi:10.1175/1520-0426(2002)019<0205:TFROLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Polzin, K. L., , A. C. N. Garabato, , T. N. Huussen, , B. M. Sloyan, , and S. Waterman, 2014: Finescale parameterizations of turbulent dissipation. J. Geophys. Res. Oceans,119, 1383–1419, doi:10.1002/2013JC008979.

  • Scott, R. B., , J. A. Goff, , A. C. N. Garabato, , and A. J. G. Nurser, 2011: Global rate and spectral characteristics of internal gravity wave generation by geostrophic flow over topography. J. Geophys. Res.,116, C09029, doi:10.1029/2011JC007005.

  • Sheen, K. L., and et al. , 2013: Rates and mechanisms of turbulent dissipation and mixing in the Southern Ocean: Results from the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean experiment. J. Geophys. Res. Oceans,118, 2774–2792, doi:10.1002/jgrc.20217.

  • Sloyan, B. M., 2005: Spatial variability of mixing in the Southern Ocean. Geophys. Res. Lett.,32, L18603, doi:10.1029/2005GL023568.

  • Smith, W. H. F., , and D. T. Sandwell, 1997: Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 19561962, doi:10.1126/science.277.5334.1956.

    • Search Google Scholar
    • Export Citation
  • Sokolov, S., , and S. R. Rintoul, 2009: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 1. Mean circumpolar paths. J. Geophys. Res.,114, C11018, doi:10.1029/2008JC005108.

  • Sparrow, M. D., , K. J. Heywood, , J. Brown, , and D. P. Stevens, 1996: Current structure of the southern Indian Ocean. J. Geophys. Res., 101 (C3), 63776391, doi:10.1029/95JC03750.

    • Search Google Scholar
    • Export Citation
  • Visbeck, M., 2002: Deep velocity profiling using lowered acoustic Doppler current profilers: Bottom track and inverse solutions. J. Atmos. Oceanic Technol., 19, 794807, doi:10.1175/1520-0426(2002)019<0794:DVPULA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waterman, S., , A. C. Naveira Garabato, , and K. L. Polzin, 2013: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr., 43, 259282, doi:10.1175/JPO-D-11-0194.1.

    • Search Google Scholar
    • Export Citation
  • Wu, L., , Z. Jing, , S. Riser, , and M. Visbeck, 2011: Seasonal and spatial variations of Southern Ocean diapycnal mixing from Argo profiling floats. Nat. Geosci., 4, 363366, doi:10.1038/ngeo1156.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 141 141 11
PDF Downloads 98 98 10

Suppression of Internal Wave Breaking in the Antarctic Circumpolar Current near Topography

View More View Less
  • 1 National Oceanography Centre, University of Southampton, Southampton, United Kingdom
  • | 2 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 3 National Oceanography Centre, University of Southampton, Southampton, United Kingdom
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.

Current affiliation: Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada.

Corresponding author address: Stephanie Waterman, Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4 Canada. E-mail: snw@alum.mit.edu

Abstract

Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.

Current affiliation: Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, Canada.

Corresponding author address: Stephanie Waterman, Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4 Canada. E-mail: snw@alum.mit.edu
Save