• Cairns, J. L., , and G. O. Williams, 1976: Internal wave observations from a midwater float, 2. J. Geophys. Res., 81 (12), 19431950.

  • D’Asaro, E. A., , and M. D. Morehead, 1991: Internal waves and velocity fine structure in the Arctic Ocean. J. Geophys. Res., 96 (C7), 12 72512 738.

    • Search Google Scholar
    • Export Citation
  • Ekman, V. W., 1905: On the influence of the earth’s rotation on ocean-currents. Ark. Mat., Astron. Fys., 2, 152.

  • Fer, I., , and A. Sundfjord, 2007: Observations of upper ocean boundary layer dynamics in the marginal ice zone. J. Geophys. Res., 112, C04012, doi:10.1029/2005JC003428.

    • Search Google Scholar
    • Export Citation
  • Gregg, M. C., , and E. Kunze, 1991: Internal wave shear and strain in Santa Monica Basin. J. Geophys. Res., 96 (C9), 16 70916 719.

  • Gross, T. G., , and A. R. M. Norwell, 1985: Spectral scaling in a tidal boundary layer. J. Phys. Oceanogr., 15, 496508.

  • Halle, C., , and R. Pinkel, 2003: Internal wave variability in the Beaufort Sea during the winter of 1993/1994. J. Geophys. Res., 108, 3210, doi:10.1029/2000JC000703.

    • Search Google Scholar
    • Export Citation
  • Hunkins, K., 1966: Ekman drift currents in the Arctic Ocean. Deep-Sea Res., 13, 607620.

  • Huntley, D. A., 1988: A modified inertial dissipation method for estimating seabed stresses at low Reynolds numbers, with application to wave/current boundary layer mechanisms. J. Phys. Oceanogr., 18, 339346.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. M., , E. C. Carmack, , F. A. McLaughlin, , S. E. Allen, , and R. G. Ingram, 2010: Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. J. Geophys. Res., 115, C05021, doi:10.1029/2009JC005265.

    • Search Google Scholar
    • Export Citation
  • Kalnay, and et al. , 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437470.

  • Krishfield, R., , J. Toole, , A. Proshutinsky, , and M.-L. Timmermans, 2008a: Automated Ice-Tethered Profilers for seawater observations under pack ice in all seasons. J. Atmos. Oceanic Technol., 25, 20912105.

    • Search Google Scholar
    • Export Citation
  • Krishfield, R., , J. Toole, , and M.-L. Timmermans, 2008b: ITP data processing procedures. Woods Hole Oceanographic Institute Tech Rep., 24 pp. [Available online at http://www.whoi.edu/fileserver.do?id=35803&pt=2&p=41486.]

  • Levine, M. D., , C. A. Paulson, , and J. H. Morison, 1985: Internal waves in the Arctic Ocean: Comparison with lower-latitude observations. J. Phys. Oceanogr., 15, 800809.

    • Search Google Scholar
    • Export Citation
  • Lu, P., , Z. Li, , B. Cheng, , and M. Lepparanta, 2011: A parameterization of the ice–ocean drag coefficient. J. Geophys. Res., 116, C07019, doi:10.1029/2010JC006878.

    • Search Google Scholar
    • Export Citation
  • Maykut, G. A., , and M. G. McPhee, 1995: Solar heating of the Arctic mixed layer. J. Geophys. Res., 100 (C12), 24 69124 703.

  • McPhee, M. G., 1979: The effect of the oceanic boundary layer on the mean drift of pack ice: Application of a simple model. J. Phys. Oceanogr., 9, 388400.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1987: A time-dependent model for turbulent transfer in a stratified oceanic boundary layer. J. Geophys. Res., 92 (C7), 69776986.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 1992: Turbulent heat flux in the upper ocean under sea ice. J. Geophys. Res., 97 (C4), 53655379.

  • McPhee, M. G., 1994: On the turbulent mixing length in the oceanic boundary layer. J. Phys. Oceanogr., 24, 20142031.

  • McPhee, M. G., 2002: Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. J. Geophys. Res., 107, 8037, doi:10.1029/2000JC000633.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2004: A spectral technique for estimating turbulent stress, scalar flux magnitude, and eddy viscosity in the ocean boundary layer under pack ice. J. Phys. Oceanogr., 34, 21802188.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2008a: Physics of early summer ice/ocean exchanges in the western Weddell Sea during ISPOL. Deep-Sea Res. II, 55, 10751097.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., 2008b: Air–Ice–Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes. Springer, 226 pp.

  • McPhee, M. G., 2012: Advances in understanding ice–ocean stress during and since AIDJEX. Cold Reg. Sci. Technol., 76-77, 2436.

  • McPhee, M. G., , and L. H. Kantha, 1989: Generation of internal waves by sea ice. J. Geophys. Res., 94 (C3), 32873302.

  • McPhee, M. G., , and D. G. Martinson, 1994: Turbulent mixing under drifting pack ice in the Weddell Sea. Science, 263, 218221.

  • McPhee, M. G., , and T. P. Stanton, 1996: Turbulence in the statically unstable oceanic boundary layer under Arctic leads. J. Geophys. Res., 101 (C3), 64096428.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., , and J. H. Morison, 2001: Under-ice boundary layer. Encyclopedia of Ocean Sciences, J. H. Steele et al., Eds., Elsevier, 3069–3076.

  • McPhee, M. G., , T. Kikuchi, , J. H. Morison, , and T. P. Stanton, 2003: Ocean-to-ice heat flux at the North Pole environmental observatory. Geophys. Res. Lett., 30, 2274, doi:10.1029/2003GL018580.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., , J. H. Morison, , and F. Nilsen, 2008: Revisiting heat and salt exchange at the ice–ocean interface: Ocean flux and modeling considerations. J. Geophys. Res., 113, C06014, doi:10.1029/2007JC004383.

    • Search Google Scholar
    • Export Citation
  • McPhee, M. G., , R. Skogseth, , F. Nilsen, , and L. H. Smedsrud, 2013: Creation and tidal advection of a cold salinity front in Storfjorden: 2. Supercooling induced by turbulent mixing of cold water. J. Geophys. Res. Oceans, 118, 37373751, doi:10.1002/jgrc.20261.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., , and R. Pinkel, 1996: Inertial currents in the Beaufort Sea: Observations of response to wind and shear. J. Geophys. Res., 101 (C3), 65776590.

    • Search Google Scholar
    • Export Citation
  • Morison, J. H., , M. G. McPhee, , and G. A. Maykut, 1987: Boundary layer, upper ocean, and ice observations in the Greenland Sea marginal ice zone. J. Geophys. Res., 92 (C7), 69877011.

    • Search Google Scholar
    • Export Citation
  • Notz, D., , M. G. McPhee, , M. G. Worster, , G. A. Maykut, , K. H. Schlunzen, , and H. Eicken, 2003: Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res., 108, 3223, doi:10.1029/2001JC001173.

    • Search Google Scholar
    • Export Citation
  • Perovich, D. K., , and J. A. Richter-Menge, 2009: Loss of sea ice in the Arctic. Annu. Rev. Mar. Sci., 1, 417441.

  • Pinkel, R., 2005: Near-inertial wave propagation in the western Arctic. J. Phys. Oceanogr., 35, 645665.

  • Rudnick, D. L., , and S. T. Cole, 2011: On sampling the ocean using underwater gliders. J. Geophys. Res., 116, C08010, doi:10.1029/2010JC006849.

    • Search Google Scholar
    • Export Citation
  • Shaw, W. J., , T. P. Stanton, , M. G. McPhee, , and T. Kikuchi, 2008: Estimates of surface roughness length in heterogeneous under-ice boundary layers. J. Geophys. Res., 113, C06012, doi:10.1029/2007JC004550.

    • Search Google Scholar
    • Export Citation
  • Shirasawa, K., , and R. G. Ingram, 1991: Characteristics of the turbulent oceanic boundary layer under sea ice. Part 1: A review of the ice–ocean boundary layer. J. Mar. Syst., 2, 153160.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., , M. G. McPhee, , J. H. Morison, , W. J. Shaw, , and T. P. Stanton, 2010: Wintertime mixed layer measurements at Maud Rise, Weddell Sea. J. Geophys. Res., 115, C02009, doi:10.1029/2008JC005141.

    • Search Google Scholar
    • Export Citation
  • Sirevaag, A., , S. de la Rosa, , I. Fer, , M. Nicolaus, , M. Tjernstrom, , and M. G. McPhee, 2011: Mixing, heat fluxes and heat content evolution of the Arctic Ocean mixed layer. Ocean Sci., 7, 335349.

    • Search Google Scholar
    • Export Citation
  • Tennekes, H., , and J. L. Lumley, 1972: A First Course in Turbulence. MIT Press, 314 pp.

  • Thwaites, F. T., , and A. J. Williams, 1996: Development of a modular acoustic velocity sensor. Proc. OCEANS ‘96: Prospects for the 21st Century, 2, Fort Lauderdale, FL, MTS/IEEE, 607–612, doi:10.1109/OCEANS.1996.568296.

  • Thwaites, F. T., , R. Krishfield, , M.-L. Timmermans, , J. M. Toole, , and A. J. Williams, 2011: Noise in ice-tethered profiler and McLane moored profiler velocity measurements. Proc. 2011 IEEE/EOS 10th Current, Waves and Turbulence Measurements Workshop, Monterey, CA, IEEE Oceanic Engineering Society, 205–212, doi:10.1109/CWTM.2011.5759553.

  • Timmermans, M.-L., , S. T. Cole, , and J. M. Toole, 2012: Horizontal density structure and restratification of the Arctic Ocean surface layer. J. Phys. Oceanogr., 42, 659668.

    • Search Google Scholar
    • Export Citation
  • Toole, J. M., , M.-L. Timmermans, , D. K. Perovich, , R. A. Krishfield, , A. Proshutinsky, , and J. A. Richter-Menge, 2010: Influences of the ocean surface mixed layer and thermohaline stratification on Arctic sea ice in the central Canada Basin. J. Geophys. Res., 115, C10018, doi:10.1029/2009JC005660.

    • Search Google Scholar
    • Export Citation
  • Williams, A. J., , F. T. Thwaites, , A. T. Morrison, , J. M. Toole, , and R. Krishfield, 2010: Motion tracking in an acoustic point-measurement current meter. Proc. OCEANS 2010 IEEE, Sydney, Australia, IEEE, 1–8, doi:10.1109/OCEANSSYD.2010.5603862.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 274 274 28
PDF Downloads 210 210 19

Ekman Veering, Internal Waves, and Turbulence Observed under Arctic Sea Ice

View More View Less
  • 1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
  • | 2 Yale University, New Haven, Connecticut
  • | 3 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.

Corresponding author address: Sylvia Cole, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., MS 21, Woods Hole, MA 02543. E-mail: scole@whoi.edu

Abstract

The ice–ocean system is investigated on inertial to monthly time scales using winter 2009–10 observations from the first ice-tethered profiler (ITP) equipped with a velocity sensor (ITP-V). Fluctuations in surface winds, ice velocity, and ocean velocity at 7-m depth were correlated. Observed ocean velocity was primarily directed to the right of the ice velocity and spiraled clockwise while decaying with depth through the mixed layer. Inertial and tidal motions of the ice and in the underlying ocean were observed throughout the record. Just below the ice–ocean interface, direct estimates of the turbulent vertical heat, salt, and momentum fluxes and the turbulent dissipation rate were obtained. Periods of elevated internal wave activity were associated with changes to the turbulent heat and salt fluxes as well as stratification primarily within the mixed layer. Turbulent heat and salt fluxes were correlated particularly when the mixed layer was closest to the freezing temperature. Momentum flux is adequately related to velocity shear using a constant ice–ocean drag coefficient, mixing length based on the planetary and geometric scales, or Rossby similarity theory. Ekman viscosity described velocity shear over the mixed layer. The ice–ocean drag coefficient was elevated for certain directions of the ice–ocean shear, implying an ice topography that was characterized by linear ridges. Mixing length was best estimated using the wavenumber of the beginning of the inertial subrange or a variable drag coefficient. Analyses of this and future ITP-V datasets will advance understanding of ice–ocean interactions and their parameterizations in numerical models.

Corresponding author address: Sylvia Cole, Woods Hole Oceanographic Institution, 266 Woods Hole Rd., MS 21, Woods Hole, MA 02543. E-mail: scole@whoi.edu
Save