• Alford, M. H., , R.-C. Lien, , H. Simmons, , J. Klymak, , S. Ramp, , Y. J. Yang, , D. Tang, , and M.-H. Chang, 2010: Speed and evolution of nonlinear internal waves transiting the South China Sea. J. Phys. Oceanogr., 40, 13381355, doi:10.1175/2010JPO4388.1.

    • Search Google Scholar
    • Export Citation
  • Alford, M. H., and et al. , 2011: Energy flux and dissipation in Luzon Strait: Two tales of two ridges. J. Phys. Oceanogr., 41, 22112222, doi:10.1175/JPO-D-11-073.1.

    • Search Google Scholar
    • Export Citation
  • Arbic, B. K., , A. J. Wallcraft, , and E. J. Metzger, 2010: Concurrent simulation of the eddying general circulation and tides in a global ocean model. Ocean Modell., 32, 175187, doi:10.1016/j.ocemod.2010.01.007.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1973: The generation of internal tides by flat-bump topography. Deep-Sea Res. Oceanogr. Abstr., 20, 179205, doi:10.1016/0011-7471(73)90050-8.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1974: The generation of internal tides over steep continental slopes. Philos. Trans. Roy. Soc. London, 277, 2758, doi:10.1098/rsta.1974.0045.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., , Y. Kanarska, , and J. C. McWilliams, 2010a: On the generation and evolution of nonlinear internal waves in the South China Sea. J. Geophys. Res., 115, C02012, doi:10.1029/2009JC005275.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., , J. C. McWilliams, , and C. R. Jackson, 2010b: East-west asymmetry in nonlinear internal waves from Luzon Strait. J. Geophys. Res., 115, C10057, doi:10.1029/2009JC006004.

    • Search Google Scholar
    • Export Citation
  • Buijsman, M. C., , Y. Uchiyama, , J. C. McWilliams, , and C. R. Hill-Lindsay, 2012: Modeling semidiurnal internal tide variability in the Southern California Bight. J. Phys. Oceanogr., 42, 6277, doi:10.1175/2011JPO4597.1.

    • Search Google Scholar
    • Export Citation
  • Carter, G. S., and et al. , 2008: Energetics if M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J. Phys. Oceanogr., 38, 22052223, doi:10.1175/2008JPO3860.1.

    • Search Google Scholar
    • Export Citation
  • Chao, S.-Y., , D.-S. Ko, , R.-C. Lien, , and P.-T. Shaw, 2007: Assessing the west ridge of Luzon Strait as an internal wave mediator. J. Oceanogr., 63, 897911, doi:10.1007/s10872-007-0076-8.

    • Search Google Scholar
    • Export Citation
  • Chapman, D. C., 1985: Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr., 15, 10601075, doi:10.1175/1520-0485(1985)015<1060:NTOCSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chavanne, C., , P. Flament, , G. Carter, , M. Merrifield, , and D. Luther, 2010a: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part I: Observations and numerical predictions. J. Phys. Oceanogr., 40, 11551179, doi:10.1175/2010JPO4222.1.

    • Search Google Scholar
    • Export Citation
  • Chavanne, C., , P. Flament, , and D. Luther, 2010b: The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents. J. Phys. Oceanogr., 40, 11801200, doi:10.1175/2010JPO4223.1.

    • Search Google Scholar
    • Export Citation
  • Chuang, W.-S., , and D.-P. Wang, 1981: Effects of density front on the generation and propagation of internal tides. J. Phys. Oceanogr., 11, 13571374, doi:10.1175/1520-0485(1981)011<1357:EODFOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colosi, J. A., , and W. Munk, 2006: Tales of the venerable Honolulu tide gauge. J. Phys. Oceanogr., 36, 967996, doi:10.1175/JPO2876.1.

  • Egbert, G. D., , and S. Y. Erofeeva, 2002: Efficient inverse modeling of barotropic ocean tides. J. Atmos. Oceanic Technol., 19, 183204, doi:10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farmer, D. M., , M. H. Alford, , R.-C. Lien, , Y. J. Yang, , M.-H. Chang, , and Q. Li, 2011: From Luzon to Dongsha Plateau: Stages in the life of an internal wave. Oceanography, 24, 6477, doi:10.5670/oceanog.2011.95.

    • Search Google Scholar
    • Export Citation
  • Flather, R. A., 1976: A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege, 6, 141164.

  • Floor, J., , F. Auclair, , and P. Marsaleix, 2011: Energy transfers in internal tide generation, propagation and dissipation in the deep ocean. Ocean Modell., 38, 2240, doi:10.1016/j.ocemod.2011.01.009.

    • Search Google Scholar
    • Export Citation
  • Gilson, J., , and D. Roemmich, 2002: Mean and temporal variability in Kuroshio geostrophic transport south of Taiwan (1993–2001). J. Oceanogr., 58, 183195, doi:10.1023/A:1015841120927.

    • Search Google Scholar
    • Export Citation
  • Griffiths, S. D., , and R. H. J. Grimshaw, 2007: Internal tide generation at the continental slope modeled using a modal decomposition: Two-dimensional results. J. Phys. Oceanogr., 37, 428451, doi:10.1175/JPO3068.1.

    • Search Google Scholar
    • Export Citation
  • Haidvogel, D., , and A. Beckmann, 1999: Numerical Ocean Circulation Modeling. Imperial College Press, 318 pp.

  • Hall, R. A., , and G. S. Carter, 2011: Internal tides in Monterey Submarine Canyon. J. Phys. Oceanogr., 41, 186204, doi:10.1175/2010JPO4471.1.

    • Search Google Scholar
    • Export Citation
  • Hibiya, T., 1986: Generation mechanism of internal waves by tidal flow over a sill. J. Geophys. Res., 91, 76977708, doi:10.1029/JC091iC06p07697.

    • Search Google Scholar
    • Export Citation
  • Holloway, P. E., , and M. A. Merrifield, 1999: Internal tide generation by seamounts, ridges, and islands. J. Geophys. Res., 104, 25 93725 951, doi:10.1029/1999JC900207.

    • Search Google Scholar
    • Export Citation
  • Hsin, Y.-C., , C.-R. Wu, , and S.-Y. Chao, 2012: An updated examination of the Luzon Strait transport. J. Geophys. Res., 117, C03022, doi:10.1029/2011JC007714.

    • Search Google Scholar
    • Export Citation
  • IOC, IHO, and BODC, 2003: Centenary Edition of the GEBCO Digital Atlas. Intergovernmental Oceanographic Commission, International Hydrographic Organization, British Oceanographic Data Centre, CD-ROM.

  • Jan, S., , R.-C. Lien, , and C.-H. Ting, 2008: Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr., 64, 789802, doi:10.1007/s10872-008-0066-5.

    • Search Google Scholar
    • Export Citation
  • Jan, S., , C.-S. Chern, , J. Wang, , and M.-D. Chiou, 2012: Generation and propagation of baroclinic tides modified by the Kuroshio in the Luzon Strait. J. Geophys. Res., 117, C02019, doi:10.1029/2011JC007229.

    • Search Google Scholar
    • Export Citation
  • Janekovic, I., , and B. Powell, 2012: Analysis of imposing tidal dynamics to nested numerical models. Cont. Shelf Res., 34, 3040, doi:10.1016/j.csr.2011.11.017.

    • Search Google Scholar
    • Export Citation
  • Jayne, S. R., 2009: The impact of abyssal mixing parameterizations in an ocean general circulation model. J. Phys. Oceanogr., 39, 17561775, doi:10.1175/2009JPO4085.1.

    • Search Google Scholar
    • Export Citation
  • Jia, Y., , Q. Liu, , and H. Hu, 2010: Decadal variation of the geostrophic vorticity west of the Luzon Strait. Open Oceanogr. J., 4, 144149.

    • Search Google Scholar
    • Export Citation
  • Johnston, T. M. S., , and M. A. Merrifield, 2003: Internal tide scattering at seamounts, ridges, and islands. J. Geophys. Res.,108, 3180, doi:10.1029/2002JC001528.

  • Kelly, S. M., , and J. D. Nash, 2010: Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett., 37, L23611, doi:10.1029/2010GL045598.

    • Search Google Scholar
    • Export Citation
  • Kerry, C. G., , B. S. Powell, , and G. S. Carter, 2013a: Effects of remote generation sites on model estimates of M2 internal tides in the Philippine Sea. J. Phys. Oceanogr., 43, 187204, doi:10.1175/JPO-D-12-081.1.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and et al. , 2001: The NCEP–NCAR 50-Year Reanalysis. Bull. Amer. Meteor. Soc., 82, 247268, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, I.-H., , Y.-H. Wang, , Y. Yang, , and D.-P. Wang, 2012: Temporal variability of internal tides in the northeast South China Sea. J. Geophys. Res., 117, C02013, doi:10.1029/2011JC007518.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., , and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Merrifield, M. A., , and P. E. Holloway, 2002: Model estimates of M2 internal tide energetics at the Hawaiian Ridge. J. Geophys. Res., 107 (C8), doi:10.1029/2001JC000996.

    • Search Google Scholar
    • Export Citation
  • Mitchum, G. T., , and S. M. Chiswell, 2000: Coherence of internal tide modulations along the Hawaiian Ridge. J. Geophys. Res., 105, 28 65328 661, doi:10.1029/2000JC900140.

    • Search Google Scholar
    • Export Citation
  • Müller, P., , and N. Xu, 1992: Scattering of oceanic internal gravity waves off random bottom topography. J. Phys. Oceanogr., 22, 474488, doi:10.1175/1520-0485(1992)022<0474:SOOIGW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Müller, P., , G. Holloway, , F. Henyey, , and N. Pomphrey, 1986: Nonlinear interactions among internal gravity waves. Rev. Geophys., 24, 493536, doi:10.1029/RG024i003p00493.

    • Search Google Scholar
    • Export Citation
  • Nan, F., , H. Xue, , F. Chai, , L. Shi, , M. Shi, , and P. Guo, 2011: Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dyn., 61, 1291–1304, doi:10.1007/s10236-011-0426-3.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., , and T. Hibiya, 2001: Numerical study of the spatial distribution of the M2 internal tide in the Pacific Ocean. J. Geophys. Res., 106, 22 44122 449, doi:10.1029/2000JC000770.

    • Search Google Scholar
    • Export Citation
  • Niwa, Y., , and T. Hibiya, 2004: Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res., 109, C04027, doi:10.1029/2003JC001923.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1981a: A formal theory of internal wave scattering with applications to ocean fronts. J. Phys. Oceanogr., 11, 10781099, doi:10.1175/1520-0485(1981)011<1078:AFTOIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Olbers, D. J., 1981b: The propagation of internal waves in a geostrophic current. J. Phys. Oceanogr., 11, 12241233, doi:10.1175/1520-0485(1981)011<1224:TPOIWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Osborne, J. J., , A. L. Kurapov, , G. D. Egbert, , and P. M. Korso, 2011: Spatial and temporal variability of the M2 internal tide generation and propagation on the Oregon Shelf. J. Phys. Oceanogr., 41, 20372062, doi:10.1175/JPO-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., , and D. R. Watts, 2006: Internal tides in the southwestern Japan/East Sea. J. Phys. Oceanogr., 36, 2234, doi:10.1175/JPO2846.1.

    • Search Google Scholar
    • Export Citation
  • Park, J.-H., , and D. Farmer, 2013: Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter. J. Geophys. Res., 118, 7081–7094, doi:10.1002/2013JC008983.

    • Search Google Scholar
    • Export Citation
  • Powell, B. S., , I. Janekovic, , G. S. Carter, , and M. A. Merrifield, 2012: Sensitivity of internal tide generation in Hawaii. Geophys. Res. Lett., 39, L10606, doi:10.1029/2012GL051724.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 1999: Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/Poseidon observations and theory. J. Phys. Oceanogr., 29, 24712486, doi:10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and R. Lukas, 1996: Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current and the Kuroshio along the Pacific western boundary. J. Geophys. Res., 101, 12 31512 330, doi:10.1029/95JC03204.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and S. Chen, 2010: Interannual variability of the North Pacific Subtropical Countercurrent and its associated mesoscale eddy field. J. Phys. Oceanogr., 40,213225, doi:10.1175/2009JPO4285.1.

    • Search Google Scholar
    • Export Citation
  • Rainville, L., , and R. Pinkel, 2006: Propagation of low-mode internal waves through the ocean. J. Phys. Oceanogr., 36, 12201236, doi:10.1175/JPO2889.1.

    • Search Google Scholar
    • Export Citation
  • Ramp, S. R., and et al. , 2004: Internal solitons in the northeastern South China Sea Part 1: Sources and deep water propagation. J. Oceanic Eng., 29, 11571181, doi:10.1109/JOE.2004.840839.

    • Search Google Scholar
    • Export Citation
  • Rudnick, D. L., and et al. , 2011: Seasonal and mesoscale variability of the Kuroshio near its origin. Oceanography, 24, 5263, doi:10.5670/oceanog.2011.94.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 1998: Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon. Wea. Rev., 126, 15411580, doi:10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2003: A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res., 108, 3090, doi:10.1029/2001JC001047.

    • Search Google Scholar
    • Export Citation
  • Shchepetkin, A. F., , and J. C. McWilliams, 2005: The Regional Oceanic Modeling System (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modell., 9, 347404, doi:10.1016/j.ocemod.2004.08.002.

    • Search Google Scholar
    • Export Citation
  • Shriver, J. F., , B. K. Arbic, , J. G. Richman, , R. D. Ray, , E. J. Metzger, , A. J. Wallcraft, , and P. G. Timko, 2012: An evaluation of the barotropic and internal tides in a high-resolution global ocean circulation model. J. Geophys. Res., 117, C10024, doi:10.1029/2012JC008170.

    • Search Google Scholar
    • Export Citation
  • Simmons, H. L., , R. W. Hallberg, , and B. K. Arbic, 2004: Internal wave generation in a global baroclinic tide model. Deep-Sea Res. II, 51, 3043–3068, doi:10.1016/j.dsr2.2004.09.015.

    • Search Google Scholar
    • Export Citation
  • van Haren, H., 2004: Some observations of nonlinearly modified internal wave spectra. J. Geophys. Res., 109, C03045, doi:10.1029/2003JC002136.

    • Search Google Scholar
    • Export Citation
  • Wajsowicz, R. C., 1993: A consistent formulation of the anisotropic stress tensor for use in models of the large-scale ocean circulation. J. Comput. Phys., 105, 333338, doi:10.1006/jcph.1993.1079.

    • Search Google Scholar
    • Export Citation
  • Yuan, D., , W. Han, , and D. Hu, 2006: Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. J. Geophys. Res., 111, C11007, doi:10.1029/2005JC003412.

    • Search Google Scholar
    • Export Citation
  • Zaron, E. D., , C. Chavanne, , G. D. Egbert, , and P. Flament, 2009: Baroclinic tidal generation in the Kauai Channel inferred from high-frequency radio Doppler current meters. Dyn. Atmos. Oceans, 48, 93120, doi:10.1016/j.dynatmoce.2009.03.002.

    • Search Google Scholar
    • Export Citation
  • Zhao, Z., , V. Klemas, , Q. Zheng, , and X.-H. Yan, 2004: Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L06302, doi:10.1029/2003GL019077.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., , J. M. Becker, , M. A. Merrifield, , and G. S. Carter, 2009: Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography. J. Phys. Oceanogr., 39, 26352651, doi:10.1175/2008JPO4136.1.

    • Search Google Scholar
    • Export Citation
  • Zilberman, N. V., , M. A. Merrifield, , G. S. Carter, , D. S. Luther, , M. D. Levine, , and T. J. Boyd, 2011: Incoherent nature of M2 internal tides at the Hawaiian Ridge. J. Phys. Oceanogr., 41, 20212036, doi:10.1175/JPO-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Zu, T., , J. Gan, , and S. Y. Erofeeva, 2008: Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Res. II, 55, 137154, doi:10.1016/j.dsr.2007.10.007.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 118 118 19
PDF Downloads 82 82 9

The Impact of Subtidal Circulation on Internal Tide Generation and Propagation in the Philippine Sea

View More View Less
  • 1 University of Hawai’i at Mānoa, Honolulu, Hawaii
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study examines the effects of the subtidal circulation on the generation and propagation of the M2 internal tide in the Philippine Sea using a primitive equation model. Barotropic to baroclinic conversion at the Luzon Strait is found to vary due to the background circulation changes over the generation site and the changing influence of remotely generated internal tides from the Mariana Arc. The varying effect of remotely generated waves results from both changing generation energy levels at the Mariana Arc and variability in the propagation of the internal tides across the Philippine Sea. The magnitude and direction of the depth-integrated baroclinic energy fluxes vary temporally, due to a combination of changing generation, propagation, and dissipation. Spatial patterns of internal tide propagation near the Luzon Strait are influenced by the locations of mesoscale eddies to the east and west of the strait. The results provide insight into the mechanisms of variability of the baroclinic tides and highlight the importance of considering both the remotely generated internal tides and the subtidal dynamics to estimate internal tide energetics.

Corresponding author address: Colette Kerry, University of Hawai’i at Mānoa, 1000 Pope Rd., Honolulu, HI 96822. E-mail: ckerry@hawaii.edu

Abstract

This study examines the effects of the subtidal circulation on the generation and propagation of the M2 internal tide in the Philippine Sea using a primitive equation model. Barotropic to baroclinic conversion at the Luzon Strait is found to vary due to the background circulation changes over the generation site and the changing influence of remotely generated internal tides from the Mariana Arc. The varying effect of remotely generated waves results from both changing generation energy levels at the Mariana Arc and variability in the propagation of the internal tides across the Philippine Sea. The magnitude and direction of the depth-integrated baroclinic energy fluxes vary temporally, due to a combination of changing generation, propagation, and dissipation. Spatial patterns of internal tide propagation near the Luzon Strait are influenced by the locations of mesoscale eddies to the east and west of the strait. The results provide insight into the mechanisms of variability of the baroclinic tides and highlight the importance of considering both the remotely generated internal tides and the subtidal dynamics to estimate internal tide energetics.

Corresponding author address: Colette Kerry, University of Hawai’i at Mānoa, 1000 Pope Rd., Honolulu, HI 96822. E-mail: ckerry@hawaii.edu
Save