• Afanasyev, Y., , A. Kostianoy, , A. Zatsepin, , and P. Poulain, 2002: Analysis of velocity field in the eastern Black Sea from satellite data during the Black Sea ‘99 experiment. J. Geophys. Res., 107 (C8), doi:10.1029/2000JC000578.

    • Search Google Scholar
    • Export Citation
  • Armi, L., , and P. Flament, 1985: Cautionary remarks on the spectral interpretation of turbulent flows. J. Geophys. Res., 90, 11 77911 782, doi:10.1029/JC090iC06p11779.

    • Search Google Scholar
    • Export Citation
  • Barton, I. J., 2002: Ocean currents from successive satellite images: The reciprocal filtering technique. J. Atmos. Oceanic Technol., 19, 16771689, doi:10.1175/1520-0426(2002)019<1677:OCFSSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blumen, W., 1978: Uniform potential vorticity flow: Part I. Theory of wave interactions and two-dimensional turbulence. J. Atmos. Sci., 35, 774783, doi:10.1175/1520-0469(1978)035<0774:UPVFPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bowen, M., , J. Enery, , P. Wilkin, , P. Tildeshey, , I. Barton, , and R. Knewston, 2002: Extracting multilayer surface currents from sequential thermal imagery using the maximum cross-correlation technique. J. Atmos. Oceanic Technol., 19, 16651676, doi:10.1175/1520-0426(2002)019<1665:EMSCFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, F. P., 1966: Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc., 92, 325334, doi:10.1002/qj.49709239302.

    • Search Google Scholar
    • Export Citation
  • Callies, J., , and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence in the submesoscale range (1–200 km). J. Phys. Oceanogr., 43, 24562474, doi:10.1175/JPO-D-13-063.1.

    • Search Google Scholar
    • Export Citation
  • Chen, W., , R. Mied, , and C. Shen, 2008: Near-surface ocean velocity from infrared images: Global optimal solution to an inverse model. J. Geophys. Res., 113, C10003, doi:10.1029/2008JC004747.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., , and J. Beckers, 2011: Introduction to Geophysical Fluid Dynamics. 2nd ed., International Geophysics Series, Vol. 101, Academic Press, 875 pp.

  • de Boyer Montégut, C., , G. Madec, , A. Fischer, , A. Lazar, , and I. Iudicone, 2004: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology. J. Geophys. Res.,109, C12003, doi:10.1029/2004JC002378.

  • Dobricic, S., 2005: New mean dynamic topography of the Mediterranean calculated from assimilation system diagnostic. Geophys. Res. Lett.,32, L11606, doi:10.1029/2005GL022518.

  • Dobricic, S., , and N. Pinardi, 2008: An oceanographic three-dimensional variational data assimilation scheme. Ocean Modell., 22, 89105, doi:10.1016/j.ocemod.2008.01.004.

    • Search Google Scholar
    • Export Citation
  • Dobricic, S., , N. Pinardi, , M. Adani, , M. Tonani, , C. Fratianni, , A. Bonazzi, , and V. Fernandez, 2007: Daily oceanographic analyses by Mediterranean Forecasting System at the basin scale. Ocean Sci., 3, 149157, doi:10.5194/os-3-149-2007.

    • Search Google Scholar
    • Export Citation
  • D’Ortenzio, F., , D. Iudicone, , C. de Boyer Montegut, , P. Testor, , D. Antoine, , S. Marullo, , R. Santoleri, , and G. Madec, 2005: Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophys. Res. Lett.,32, L12605, doi:10.1029/2005GL022463.

  • D’Ovidio, F., , J. Isern-Fontanet, , C. López, , E. Hernández-García, , and E. García-Ladona, 2009: Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep-Sea Res. I, 56, 1531, doi:10.1016/j.dsr.2008.07.014.

    • Search Google Scholar
    • Export Citation
  • Drévillon, M., and et al. , 2008: The GODAE/Mercator-Ocean global ocean forecasting system: Results, applications, and prospects. J. Oper. Oceanogr., 1, 5157.

    • Search Google Scholar
    • Export Citation
  • Emery, N. J., , A. C. Thomas, , M. J. Collins, , W. Crawford, , and D. Mackas, 1986: An objective method for computing advective surface velocities from sequential infrared satellite images. J. Geophys. Res., 91, 12 86512 878, doi:10.1029/JC091iC11p12865.

    • Search Google Scholar
    • Export Citation
  • Fekete, B., , C. Vörösmarty, , and W. Grabs, 1999: Global, composite runoff fields based on observed river discharge and simulated water balances. Global Runoff Data Center Tech. Rep. 22, 108 pp.

  • Ferrari, R., , and F. Paparella, 2003: Compensation and alignment of thermohaline gradients in the ocean mixed layer. J. Phys. Oceanogr., 33, 22142223, doi:10.1175/1520-0485(2003)033<2214:CAAOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gaultier, L., , J. Verron, , J.-M. Brankart, , O. Titaud, , and P. Brasseur, 2013: On the inversion of submesoscale tracer fields to estimate the surface ocean circulation. J. Mar. Syst.,126, 33–42, doi:10.1016/j.jmarsys.2012.02.014.

  • Hamad, N., , C. Millot, , and I. Taupier-Letage, 2005: A new hypothesis about the surface circulation in the eastern basin of the Mediterranean Sea. Prog. Oceanogr., 66, 287298, doi:10.1016/j.pocean.2005.04.002.

    • Search Google Scholar
    • Export Citation
  • Hausmann, U., , and A. Czaja, 2012: The observed signature of mesoscale eddies in sea surface temperature and the associated heat transport. Deep-Sea Res. I,70, 60–72, doi:10.1016/j.dsr.2012.08.005.

  • Held, I., , R. Pierrehumbert, , S. Garner, , and K. Swanson, 1995: Surface quasi-geostrophic dynamics. J. Fluid Mech., 282, 120, doi:10.1017/S0022112095000012.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., , M. McIntyre, , and A. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Quart. J. Roy. Meteor. Soc., 111, 877946, doi:10.1002/qj.49711147002.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., , and E. Hascoët, 2014: Diagnosis of high-resolution upper ocean dynamics from noisy sea surface temperature. J. Geophys. Res. Oceans, 119, 121–132, doi:10.1002/2013JC009176.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., , J. Font, , E. García-Ladona, , M. Emelianov, , C. Millot, , and I. Taupier-Letage, 2004: Spatial structure of anticyclonic eddies in the Algerian Basin (Mediterranean Sea) analyzed using the Okubo–Weiss parameter. Deep-Sea Res. II, 51, 30093028, doi:10.1016/j.dsr2.2004.09.013.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., , B. Chapron, , G. Lapeyre, , and P. Klein, 2006a: Potential use of microwave sea surface temperature for the estimation of surface ocean currents. Geophys. Res. Lett.,33, L24608, doi:10.1029/2006GL027801.

  • Isern-Fontanet, J., , E. García-Ladona, , and J. Font, 2006b: The vortices of the Mediterranean Sea: An altimetric perspective. J. Phys. Oceanogr., 36, 87103, doi:10.1175/JPO2826.1.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., , E. García-Ladona, , J. Font, , and A. García-Olivares, 2006c: Non-Gaussian velocity probability density functions: An altimetric perspective of the Mediterranean Sea. J. Phys. Oceanogr., 36, 21532164, doi:10.1175/JPO2971.1.

    • Search Google Scholar
    • Export Citation
  • Isern-Fontanet, J., , A. Turiel, , E. García-Ladona, , and J. Font, 2007: Microcanonical multifractal formalism: Application to the estimation of ocean surface velocities. J. Geophys. Res.,112, C05024, doi:10.1029/2006JC003878.

  • Isern-Fontanet, J., , G. Lapeyre, , P. Klein, , B. Chapron, , and M. Hetcht, 2008: Three-dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res., 113, C09005, doi:10.1029/2007JC004692.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., 1989: An inverse model for near-surface velocity from infrared images. J. Phys. Oceanogr., 19, 18451864, doi:10.1175/1520-0485(1989)019<1845:AIMFNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kim, S., and et al. , 2011: Mapping the U.S. West Coast surface circulation: A multiyear analysis of high-frequency radar observations. J. Geophys. Res.,116, C03011, doi:10.1029/2010JC006669.

  • Klein, P., , and B. Hua, 1988: Mesoscale variability of the wind-driven mixed layer: Influence of a quasi-geostrophic flow. J. Mar. Res., 46, 495525, doi:10.1357/002224088785113568.

    • Search Google Scholar
    • Export Citation
  • Klein, P., , and B. Hua, 1990: The mesoscale variability of the sea surface temperature: An analytical and numerical model. J. Mar. Res., 48, 729763, doi:10.1357/002224090784988700.

    • Search Google Scholar
    • Export Citation
  • Klein, P., , A. Tréguier, , and B. Hua, 1998: Quasigeostrophic stirring of thermohaline fronts. J. Mar. Res., 56, 589612, doi:10.1357/002224098765213595.

    • Search Google Scholar
    • Export Citation
  • Klein, P., , G. Lapeyre, , G. Roullet, , S. Le Gentil, , and H. Sasaki, 2010: Ocean turbulence at meso and submesoscales: Connection between surface and interior dynamics. Geophys. Astrophys. Fluid Dyn., 105,421437, doi:10.1080/03091929.2010.532498.

    • Search Google Scholar
    • Export Citation
  • Kourafalou, V., , and K. Barbopoulos, 2003: High resolution simulations on the north Aegean Sea seasonal circulation. Ann. Geophys., 21, 251265, doi:10.5194/angeo-21-251-2003.

    • Search Google Scholar
    • Export Citation
  • LaCasce, J., 2012: Surface quasigeostrophic solutions and baroclinic modes with exponential stratification. J. Phys. Oceanogr.,42, 569–580, doi:10.1175/JPO-D-11-0111.1.

  • LaCasce, J., , and A. Mahadevan, 2006: Estimating subsurface horizontal and vertical velocities from sea surface temperature. J. Mar. Res., 64, 695721, doi:10.1357/002224006779367267.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., 2009: What mesoscale signal does the altimeter see? On the decomposition in baroclinic modes and the role of the surface boundary condition. J. Phys. Oceanogr., 39, 28572874, doi:10.1175/2009JPO3968.1.

    • Search Google Scholar
    • Export Citation
  • Lapeyre, G., , and P. Klein, 2006: Dynamics of the upper oceanic layers in terms of surface quasigeostrophy theory. J. Phys. Oceanogr., 36, 165176, doi:10.1175/JPO2840.1.

    • Search Google Scholar
    • Export Citation
  • Larnicol, G., , N. Ayoub, , and P. Le Traon, 2002: Major changes in the Mediterranean Sea level variability from 7 years of TOPEX/POSEIDON ERS-1/2 data. J. Mar. Syst., 33–34, 6389, doi:10.1016/S0924-7963(02)00053-2.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P., , M. Rouquet, , and C. Boissier, 1990: Spatial scales of mesoscale variability in the North Atlantic as deduced from Geosat data. J. Geophys. Res., 95, 20 26720 285, doi:10.1029/JC095iC11p20267.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P., , P. Klein, , B. Hua, , and G. Dibarbourne, 2008: Do altimeter wavenumber spectra agree with interior or surface quasi-geostrophic theory? J. Phys. Oceanogr., 38, 11371142, doi:10.1175/2007JPO3806.1.

    • Search Google Scholar
    • Export Citation
  • Madec, G., 2008: NEMO ocean engine. Note du Pôle de Modélisation Institut Pierre-Simon Laplace Tech. Rep. 27, 217 pp.

  • Madec, G., , P. Delecluse, , M. Imbard, , and C. Levy, 1998: OPA 8.1 ocean general circulation model reference manual. Note du Pôle de Modélisation Institut Pierre-Simon Laplace Tech. Rep. 11, 97 pp.

  • Malanotte-Rizzoli, P., , B. B. Manca, , M. R. d’Alcala, , A. Theocharis, , S. Brenner, , G. Budillon, , and E. Ozsoy, 1999: The eastern Mediterranean in the 80s and in the 90s: The big transition in the intermediate and deep circulations. Dyn. Atmos. Oceans,29, 365–395, doi:10.1016/S0377-0265(99)00011-1.

  • Millot, C., 1999: Circulation in the western Mediterranean sea. J. Mar. Syst., 20, 423442, doi:10.1016/S0924-7963(98)00078-5.

  • Millot, C., , and I. Taupier-Letage, 2005: Circulation in the Mediterranean Sea. Handb. Environ. Chem.,5K, 29–66, doi:10.1007/b107143.

  • Millot, C., , and R. Gerin, 2010: The mid-Mediterranean jet artefact. Geophys. Res. Lett.,37, L12602, doi:10.1029/2010GL043359.

  • Notarstefano, G., , P.-M. Poulain, , and E. Mauri, 2008: Estimation of surface currents in the Adriatic Sea from sequential infrared satellite images. J. Atmos. Oceanic Technol.,25, 271–285, doi:10.1175/2007JTECHO527.1.

  • Oddo, P., , M. Adani, , N. Pinardi, , C. Fratianni, , M. Tonani, , and D. Pettenuzzo, 2009: A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Sci., 5, 461473, doi:10.5194/os-5-461-2009.

    • Search Google Scholar
    • Export Citation
  • Ostrovskii, A., , and L. Piterbarg, 1995: Inversion for heat anomaly transport from sea surface temperature time series in the northwest Pacific. J. Geophys. Res.,100, 4845–4865, doi:10.1029/94JC03041.

  • Pascual, A., , Y. Faugère, , G. Larnicol, , and P. Le Traon, 2006: Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophys. Res. Lett.,33, L02611, doi:10.1029/2005GL024633.

  • Pierrehumbert, R., , I. Held, , and K. Swanson, 1994: Spectra of local and nonlocal two-dimensional turbulence. Chaos Solitons Fractals, 4, 11111116, doi:10.1016/0960-0779(94)90140-6.

    • Search Google Scholar
    • Export Citation
  • Pinardi, N., , M. Zavatarelli, , E. Arneri, , A. Crise, , and M. Ravaioli, 2005: The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. The Sea, A. Robinson and K. Brink, Eds., The Global Coastal Ocean, Vol. 14, Harvard University Press, 1245–1331.

  • Poulain, P., , M. Menna, , and E. Mauri, 2012: Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr.,42, 973–990, doi:10.1175/JPO-D-11-0159.1.

  • Puillat, I., , I. Taupier-Letage, , and C. Millot, 2002: Algerian eddies lifetime can near 3 years. J. Mar. Syst., 31, 245259, doi:10.1016/S0924-7963(01)00056-2.

    • Search Google Scholar
    • Export Citation
  • Pujol, M., , and G. Larnicol, 2005: Mediterranean Sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst., 58, 121142, doi:10.1016/j.jmarsys.2005.07.005.

    • Search Google Scholar
    • Export Citation
  • Raicich, F., 1996: On fresh water balance of the Adriatic Sea. J. Mar. Syst., 9, 305319, doi:10.1016/S0924-7963(96)00042-5.

  • Rubio, A., , P. Arnau, , M. Espino, , M. Flexas, , G. Jordà, , J. Salat, , J. Puigdefàbregas, , and A. Sánchez-Arcilla, 2005: A field study of the behaviour of an anticyclonic eddy on the Catalan continental shelf (NW Mediterranean). Prog. Oceanogr.,66, 142–156, doi:10.1016/j.pocean.2004.07.012.

  • Sasaki, H., , and P. Klein, 2012: SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J. Phys. Oceanogr., 42, 12331241, doi:10.1175/JPO-D-11-0180.1.

    • Search Google Scholar
    • Export Citation
  • Stammer, D., 1997: Global characteristics of ocean variability estimated from regional TOPEX/Poseidon altimeter measurements. J. Phys. Oceanogr., 27, 17431769, doi:10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taupier-Letage, I., 2008: On the use of thermal images for circulation studies: Applications to the eastern Mediterranean Basin. Remote Sensing of the European Seas, V. Barale and M. Gade, Eds., Springer, 153–164, doi:10.1007/978-1-4020-6772-3_12.

  • Taupier-Letage, I., , I. Puillat, , C. Millot, , and P. Raimbault, 2003: Biological response to mesoscale eddies in the Algerian Basin. J. Geophys. Res.,108, 3245, doi:10.1029/1999JC000117.

  • Tonani, M., , N. Pinardi, , S. Dobricic, , I. Pujol, , and C. Fratianni, 2008: A high-resolution free-surface model of the Mediterranean Sea. Ocean Sci., 4, 114, doi:10.5194/os-4-1-2008.

    • Search Google Scholar
    • Export Citation
  • Tulloch, R., , and K. Smith, 2006: A new theory for the atmospheric energy spectrum: Depth-limited temperature anomalies at the tropopause. Proc. Natl. Acad. Sci. USA, 103, 14 69014 694, doi:10.1073/pnas.0605494103.

    • Search Google Scholar
    • Export Citation
  • Turiel, A., , J. Isern-Fontanet, , E. García-Ladona, , and J. Font, 2005: Multifractal method for the instantaneous evaluation of the stream-function in geophysical flows. Phys. Rev. Lett.,95, 104502, doi:10.1103/PhysRevLett.95.104502.

  • Vigan, X., , C. Provost, , R. Bleck, , and P. Courtier, 2000: Sea surface velocities from sea surface temperature images sequences: 1. Method and validation using primitive equation model output. J. Geophys. Res., 105, 19 49919 514, doi:10.1029/2000JC900027.

    • Search Google Scholar
    • Export Citation
  • Wang, J., , G. Flierl, , J. LaCasce, , J. McClean, , and A. Mahadevan, 2013: Reconstructing the ocean’s interior from surface data. J. Phys. Oceanogr., 43, 16111626, doi:10.1175/JPO-D-12-0204.1.

    • Search Google Scholar
    • Export Citation
  • Wilkin, J., , M. Bowen, , and W. Emery, 2002: Mapping mesoscale currents by optimal interpolation of satellite radiometer and altimeter data. Ocean Dyn., 52, 95103, doi:10.1007/s10236-001-0011-2.

    • Search Google Scholar
    • Export Citation
  • Xie, P., , and P. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Y., , and L. Fu, 2011: Global variability of the wavenumber spectrum of oceanic mesoscale turbulence. J. Phys. Oceanogr., 41, 802809, doi:10.1175/2010JPO4558.1.

    • Search Google Scholar
    • Export Citation
  • Zavialov, P., , J. Grigorieva, , O. Moller Jr., , A. Kostianoy, , and M. Gregoire, 2002: Continuity preserving modified cross-correlation technique. J. Geophys. Res., 107, 3160, doi:10.1029/2001JC001116.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 131 11
PDF Downloads 99 99 5

On the Transfer Function between Surface Fields and the Geostrophic Stream Function in the Mediterranean Sea

View More View Less
  • 1 Institut Català de Ciències del Clima, Barcelona, Spain
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The real transfer function and the phase shift between sea surface height (SSH) and sea surface buoyancy (SSB) were estimated from the output of a realistic eddy-resolving model of the Mediterranean Sea circulation. The analysis of their temporal evolution unveiled the existence of a clear seasonal cycle closely related to that of the mixed layer depth. The phase shifts between SSH and SSB attain their minimum for deep mixed layers, which is different from zero. Besides, the spectral slope of the transfer function at scales shorter than 100 km fluctuates between k−1 and k−2. For deep mixed layers, it is close to k−1, as predicted by the surface quasigeostrophic (SQG) solution. At longer wavelengths, it is approximately constant under the different environmental conditions in all of the subbasins analyzed with the exception of the Gulf of Lions. The capability to observe sea surface temperature (SST) from satellites motivated the extension of this analysis to SST and SSH. Results showed a similar qualitative behavior but with larger phase shifts. In spite of the presence of a phase shift, even for deep mixed layers, results revealed that it is still possible to reconstruct surface dynamics from SST using a transfer function, provided that the mixed layer is deep enough. For the present study, a threshold value of 70 m was enough to identify the appropriate environmental conditions. In addition, the results revealed that a precise estimation of the transfer function significantly improves the reconstruction of the flow in comparison with the application of the classical SQG solution.

Corresponding author address: Jordi Isern-Fontanet, Institut Català de Ciències del Clima, Doctor Trueta 203, 08005 Barcelona, Spain. E-mail: jisern@ic3.cat

Abstract

The real transfer function and the phase shift between sea surface height (SSH) and sea surface buoyancy (SSB) were estimated from the output of a realistic eddy-resolving model of the Mediterranean Sea circulation. The analysis of their temporal evolution unveiled the existence of a clear seasonal cycle closely related to that of the mixed layer depth. The phase shifts between SSH and SSB attain their minimum for deep mixed layers, which is different from zero. Besides, the spectral slope of the transfer function at scales shorter than 100 km fluctuates between k−1 and k−2. For deep mixed layers, it is close to k−1, as predicted by the surface quasigeostrophic (SQG) solution. At longer wavelengths, it is approximately constant under the different environmental conditions in all of the subbasins analyzed with the exception of the Gulf of Lions. The capability to observe sea surface temperature (SST) from satellites motivated the extension of this analysis to SST and SSH. Results showed a similar qualitative behavior but with larger phase shifts. In spite of the presence of a phase shift, even for deep mixed layers, results revealed that it is still possible to reconstruct surface dynamics from SST using a transfer function, provided that the mixed layer is deep enough. For the present study, a threshold value of 70 m was enough to identify the appropriate environmental conditions. In addition, the results revealed that a precise estimation of the transfer function significantly improves the reconstruction of the flow in comparison with the application of the classical SQG solution.

Corresponding author address: Jordi Isern-Fontanet, Institut Català de Ciències del Clima, Doctor Trueta 203, 08005 Barcelona, Spain. E-mail: jisern@ic3.cat
Save